摘要:
A method for driving a display panel includes at least two driving operations. The first driving operation includes driving a first display area of the display panel by outputting a data signal of a first frame to the first display area and driving a gate line of a first gate line group in the first display area. The second driving operation includes driving a second display area of the display panel by outputting a data signal of a second frame to the second display area and driving a gate line of a second gate line group in the second display area. The first display area is adjacent to the second display area, and the first frame is different from the second frame.
摘要:
An organic light emitting display includes a plurality of pixels and a timing controller. The timing controller accumulates emission luminance values during a plurality of frames. The timing controller then supplies a reset signal to the pixels to respectively set non-emission periods for a plurality of subfields when the accumulated emission luminance value exceeds a reference value.
摘要:
A display device includes: a net power control circuit configured to analyze a screen load from an input image signal to generate a load signal including a load value corresponding to the screen load; and an overcurrent protection circuit configured to set a set current value at a predetermined ratio with respect to a global current value corresponding to the load value included in the load signal, and to determine whether or not the display device is powered off based on the set current value.
摘要:
A gate-on voltage applied to a third gate line connected to the current stage pixel is configured to be applied during any one or more of a first pre-charge period, a second pre-charge period, and a main-charge period. Data voltages are applied, in order, to a before-previous stage pixel, a previous stage pixel, and a current stage pixel, and the signal controller is configured to control the gate driver to selectively apply the gate-on voltage to the gate line connected to the current stage pixel during at least one of the first pre-charge period while the before-previous stage pixel is being charged and the second pre-charge period while the previous stage pixel is charged, so as to at least partially pre-charge the current stage pixel.
摘要:
A method of driving a display device includes driving a light source unit with a first driving ratio and outputting received image data to a display panel of the display device, storing the received image data upon receipt of a signal indicating a still image is displayed, calculating a second driving ratio of the light source unit from a representative value of the stored image data, compensating the stored image data according to the second driving ratio, driving the light source unit with the second driving ratio that is lower than the first driving ratio, and outputting the compensated image data to the display panel.
摘要:
A display apparatus includes a display panel, a gate driver, a data driver and an emission driver. The display panel is configured to display an image. The gate driver is configured to output a gate signal having different applying timings for frames according to a difference between a grayscale value of a present frame image and a grayscale value of a previous frame image to the display panel. The data driver is configured to output a data voltage to the display panel. The emission driver is configured to output an emission signal to the display panel.
摘要:
A display device includes a display panel including sub-pixels, a first driver adjacent to a first side of the display panel to generate first signals, and a second driver adjacent to the first side to generate second signals. The display panel includes vertical lines including one ends disposed at the first side to apply the first signals to the sub-pixels, diagonal lines crossing the vertical lines to apply the second signals to the sub-pixels, and crossing lines crossing the vertical and diagonal lines. The diagonal lines include first diagonal lines including one ends at the first side and second diagonal lines including one ends at a second side adjacent to the first side. The crossing lines include one ends at the first side and the other ends at the second side. The crossing lines receive the second signals and apply the second signals to the second diagonal lines.
摘要:
A stereoscopic image display device includes a display panel, a scan driver, and a data driver. The display panel includes pixels coupled to data lines and scan lines. The pixels do not emit light during a data pre-addressing period and pixels emit light during a data addressing period. The scan driver supplies scan signals to the scan lines. The data driver supplies data voltages to the data lines in synchronization with the scan signals. The scan driver supplies first scan signals to the scan lines during the data pre-addressing period, and supplies second scan signals to the scan lines during the data addressing period. Each of the first scan signals has one pulse, and each of the second scan signals has a plurality of pulses.
摘要:
A method of driving a display device includes a writing operation and a reading operation. The writing operation includes writing first to Mth frame data in a first frame memory during first to Mth frame periods. The reading operation includes reading (L−M)th and (L−M+1)th frame data among the first to Mth frame data from the first frame memory during an Lth frame period. M may be three or more, and L may be an integer ranging from (M+1) to (2M−1). The frame data read from the first frame memory corresponds to an image to be displayed. Reading and writing operations are further performed for remaining ones of the frame memories.
摘要:
A display device and a driving method for converting a low-resolution image into a high-resolution image and preventing a visible boundary between partitioned display areas are disclosed. One inventive aspect includes a display panel, a dividing control unit and a scaler. The display panel includes panel areas. The dividing control unit divides an input image into sub-images and the scaler scales the sub-images. The inventive aspect further includes an extra image removing unit and a driver. The extra image removing unit removes an scaled extra image from the scaled sub-image so that the driver provides the processed sub-image to the corresponding panel area.