Abstract:
A pixel circuit includes an organic light emitting diode including an anode and a cathode connected to a low power voltage, a first transistor including a gate electrode, a first electrode connected to a high power voltage, and a second electrode connected to the anode, a storage capacitor connected between the high power voltage and the gate electrode of the first transistor, a second transistor including a first electrode which receives a data signal corresponding to an emission sustaining voltage or an emission finishing voltage, a second electrode connected to the gate electrode of the first transistor, and a gate electrode which receives an erase scan signal, and a third transistor including a first electrode connected to an emission starting voltage, a second electrode connected to the gate electrode of the first transistor, and a gate electrode which receives a write scan signal.
Abstract:
A display apparatus comprises a display panel including a plurality of color sub-pixels which are arranged as a plurality of sub-pixel columns and a plurality of sub-pixel rows, a first pixel column and a second pixel column which include a plurality of sub-pixel columns, a luminance controller configured to correct color grayscale data of at least one color sub-pixel included in at least one of the first and second pixel columns by 1-grayscale based on a luminance difference between the first and second pixel columns, and a data driver configured to convert the color grayscale data of the color sub-pixel to a data voltage and to provide the display panel with the data voltage.
Abstract:
A display device and a driving method for converting a low-resolution image into a high-resolution image and preventing a visible boundary between partitioned display areas are disclosed. One inventive aspect includes a display panel, a dividing control unit and a scaler. The display panel includes panel areas. The dividing control unit divides an input image into sub-images and the scaler scales the sub-images. The inventive aspect further includes an extra image removing unit and a driver. The extra image removing unit removes an scaled extra image from the scaled sub-image so that the driver provides the processed sub-image to the corresponding panel area.
Abstract:
A luminance adjustment part includes a luminance determination part and a data compensation part. The luminance determination part may determine a control value for controlling luminance of a backlight assembly using linear image data that has a linear luminance profile and is generated by performing a de-gamma process on a first copy of input image data that has a nonlinear luminance profile. The compensation part may compensate pixel data that corresponds to pixels of a display panel using the control value, the pixel data being generated using a second copy of the input image data. Thus, color distortion of a displayed image as perceived by a viewer may be minimized when power consumption of a display apparatus that includes the display panel is decreased.
Abstract:
A display apparatus includes a display panel including a first data line, a timing controller which generates an external voltage selection signal, a channel control signal and a data signal, an external voltage generator which selects one of first voltage levels based on the external voltage selection signal to generate a first external voltage, and a data driver including a channel voltage generator which generates a first channel voltage, a first channel line connected to the first data line, a first switch connected between a first node receiving the first channel voltage and a second node connected to the first channel line, and a second switch connected between a third node receiving the first external voltage and a fourth node connected to the first channel line, where the data driver controls operations of the first and second switches based on the channel control signal.
Abstract:
A display apparatus includes: a display panel including a gate line, a data line, a switching element connected to the gate line and the data line, a liquid crystal capacitor having a first terminal connected to the switching element, and a storage capacitor having a first terminal connected to the switching element; and a leakage current generating part which generates a leakage current in the switching element.
Abstract:
An image processing part includes an edge enhancing part, an artifact detecting part and a compensating part. The edge enhancing part emphasizes an edge portion of an object in input image data. The artifact detecting part detects a corner outlier artifact at an area adjacent to the edge portion of the object. The compensating part compensates the corner outlier artifact. Accordingly, the edge portion of the object may be enhanced and the corner outlier artifact is decreased so that the display quality may be improved.
Abstract:
A method of displaying a three-dimensional image, the method includes sequentially displaying a first three-dimensional image on a plurality of horizontal lines of a display panel along a scan direction, and simultaneously displaying a black image on the horizontal lines of the display panel, the black image being inserted between the three-dimensional images having different images.
Abstract:
A display apparatus having an edge determiner configured to determine an edge area of the moving object based on moving direction and moving speed corresponding to the moving vector. The display apparatus also includes a gamma output controller configured to output normal high data of a high gamma curve and normal low data of a low gamma curve as gamma data of input data corresponding to a remaining area except for the edge area, and to output enhanced high data of the high gamma curve and enhanced low data of the low gamma curve as gamma data of input data corresponding to the edge area, in both time division method and space division method based on a spatiotemporal sequential pattern.
Abstract:
A liquid crystal display includes: a display panel including data lines, scan lines and a plurality of pixels connected to the data lines and the scan lines; a scan driver configured to supply scan signals to the scan lines; a data driver configured to supply data voltages to the data lines; and a timing controller configured to control operation timings of the scan driver and the data driver, where the timing controller is configured to output a plurality of scan output enable signals to the scan driver, and the scan driver is configured to supply odd scan signals to odd scan lines based on a first scan output enable signal of the scan output enable signals and to supply even scan signals to even scan lines based on a second scan output enable signal of the scan output enable signals.