Abstract:
Provided are a backlight assembly and a display device having the same. A backlight assembly includes a light source unit which emits light, a light guide plate (LGP) including an incident surface upon which light emitted from the light source unit is incident, an opposite surface which faces the incident surface, and an exit surface which connects the incident surface and the opposite surface and from which light incident upon the incident surface exits, a wavelength conversion member which is located on the exit surface and converts a wavelength of light output from the exit surface, and a first reflective member which is located on the opposite surface and reflects light incident upon the opposite surface, wherein the first reflective member includes a plurality of first color patterns which face the opposite surface.
Abstract:
A reflection sheet of display backlighting unit is designed to be spaced apart by a predetermined gap distance from an overlying optical layer. However, the reflection sheet may inadvertently come into at least partial contact with the overlying optical layer. The reflection sheet is configured to avoid the creation of line contacts and wide area contacts with the optical layer. More specifically, the reflection sheet includes an upper skin layer having particles embedded therein. An average of surface roughness or height differences of the protrusions is caused to have a value of 15 μm or larger, and an interval between the adjacent protrusions is caused to be 200 μm or less.
Abstract:
A nanophosphor sheet is presented. The nanophosphor sheet may include a base layer, a plurality of core-shell phosphors dispersed in the base layer, and a coating layer surrounding at least one core-shell phosphor among the plurality of core-shell phosphors. Also presented is a backlight device that includes a light source emitting light, a light guide plate receiving the light, and a plurality of core-shell phosphors positioned to receive the light and convert the light to white light. The core-shell phosphors may be incorporated into the light guide plate or be positioned on the light guide plate as a separate layer.
Abstract:
A display apparatus includes: a base substrate; a thin film transistor disposed on the base substrate and including an active pattern; an insulating layer disposed on the active pattern of the thin film transistor; a connection electrode disposed on the insulating layer, and electrically connected to the thin film transistor, wherein the connection electrode includes a curved wiring portion; a first via insulating layer covering the connection electrode; a first electrode disposed on the first via insulating layer; a light emitting layer disposed on the first electrode and at least partially overlapping the connection electrode; and a second electrode disposed on the light emitting layer.
Abstract:
According to an exemplary embodiment, the present system and method provide a quantum dot sheet including: a color conversion film that includes quantum dots and a polymer layer in which the quantum dots are dispersed; a first barrier film that is provided one a planar surface of the color conversion film; and a phosphor pattern that has a portion located along an edge portion of the surface of the first barrier film. The phosphor pattern, which may be printed onto the quantum dot sheet, prevents deterioration of the color conversion performance of the quantum dot sheet that may occur due to oxidization.
Abstract:
A wavelength converter and a liquid crystal display having the same, the wavelength converter including a first pattern that converts a wavelength of light into red light, and a second pattern that converts a wavelength of light into green light. The first pattern and the second pattern are alternately disposed, and an optical path length La of each of the first pattern and the second pattern is given by Equation (1): La=(λa/2)×m, wherein La is an optical length of an a-th pattern, λa is a wavelength of light converted by the a-th pattern, a is one or two, and m is a natural number.
Abstract:
A quantum rod sheet includes: a first support layer including a plurality of grooves which extends substantially in a predetermined direction; a plurality of quantum rods arranged substantially in the predetermined direction along the grooves of the first support layer; and a second support layer which covers the first support layer and the quantum rods.