Abstract:
A display device includes a curved display panel and a backlight unit. The backlight unit includes a light guide film and a light source unit. The light guide film defines: a light emission part thereof facing the display panel, a folding part thereof extending from the light emission part to be folded in a folded state of the light guide film, and a light incident part thereof extending from the folding part to face the display panel with the light emission part therebetween, The light incident part is extended at a first end thereof from the folding part and defines a light incident surface of the light guide film at a second end of the light incident part opposite to the first end thereof. The light source unit is overlapped with the light emission part and face the light incident surface.
Abstract:
A display apparatus includes a bending area and a non-bending area, a display panel including a first panel area, a second panel area, and a panel bending portion that is bent such that at least a portion of the first panel area overlaps a portion of the second panel area, the display panel may have a curvature in the bending area, and a spacer between the first panel area and the second panel area, the spacer including a first portion in the bending area and a second portion in the non-bending area, wherein the first portion of the spacer is different in material from the second portion, and wherein the first portion of the spacer may have a curvature in the bending area substantially equal to a curvature of the display panel in the bending area.
Abstract:
A display panel includes a display area, in which a plurality of pixels is arranged and a plurality of peripheral areas surrounding the display area. The display panel includes a first substrate, a second substrate disposed opposite to the first substrate, a first external signal line disposed on the first substrate in a first peripheral area of plurality of peripheral areas and connected to an external device, and a first through-hole terminal including a conductive material filled in a hole defined through the first substrate in an area in which the first external signal line is disposed.
Abstract:
A backlight unit includes a light guide member including an incident surface extending in a first direction and a light source unit which generates a light, provides the light to the incident surface includes a body member extending in the first direction to define a cavity therein and includes a light exit part defined in one side portion facing the incident surface and connected to the cavity, a first light source disposed in the cavity and including a laser diode generating a first light having a first color, and a second light source disposed in the cavity spaced apart from the first light source in the first direction and including a laser diode generating a second light having a second color where the body member provides a third light having a third color obtained by combining the first and second colors to the incident surface through the light exit part.
Abstract:
The display device includes a display panel, an optical member, a light guide plate, and a bottom member. The optical member includes a body contacting a bottom surface of the display panel and a plurality of foldable parts extending from the first body. The light guide plate overlaps the body and is disposed below the optical member. The bottom member is disposed below the light guide plate and has a plurality of slits, which correspond to the plurality of foldable parts. The plurality of first foldable parts are bent from the first body, respectively inserted into the plurality of first slits, and fixed to the bottom member.
Abstract:
A display device includes a light guide unit, a light source, a display panel and a protective member. The light guide unit includes a first surface, a second surface facing the first surface, and a plurality of connecting surfaces connecting the first surface and the second surface to each other, and guides a light which is incident to a connecting surface to the first surface. The light source provides light to the connecting surface. The display panel displays an image using the light provided from the first surface of the light guide unit. The protective member includes a plurality of reflective patterns facing another connecting surface among the plurality connecting surfaces, provides the light leaked from the light guide unit to the another connecting surface, and accommodates the light guide unit, the light source and the display panel therein.
Abstract:
A display device includes a backlight unit which generates light, a display panel which receives the light to display an image, a containing member in which the display panel is accommodated, and a supporting member coupled to the containing member and configured to support an edge portion of the display panel. The supporting member includes first and second supporting part and a coupling part. The first and second supporting parts extend in first and second directions, respectively, along the edge portion of the display panel. The coupling part is coupled to the first and second supporting parts and is configured to connect the first supporting parts to the second supporting parts. The coupling part includes a reflection surface facing a direction different from the first and second directions in a plan view.
Abstract:
An optical clear resin includes a tetrahydrofuran (THF)-based oligomer having a glass transition temperature of about −50° C. or less, an acrylate-based monomer, and a photoinitiator. As the optical clear resin includes the tetrahydrofuran-based oligomer, the curing time of the optical clear resin is shortened and the modulus of elasticity of the optical clear resin is lowered.
Abstract:
A display device includes a display panel including a bending area and a non-bending area adjacent to the bending area, a base substrate disposed under the display panel and including a through-hole overlapping the bending area, a conductive part filling the through-hole, a flexible printed circuit board including a first surface connected to the conductive part and second a surface opposite to the first surface, a first film contacting the first surface of the flexible printed circuit board overlapping the non-bending area, and a protection member contacting an upper surface of the first film.
Abstract:
An optical clear resin includes a tetrahydrofuran (THF)-based oligomer having a glass transition temperature of about −50° C. or less, an acrylate-based monomer, and a photoinitiator. As the optical clear resin includes the tetrahydrofuran-based oligomer, the curing time of the optical clear resin is shortened and the modulus of elasticity of the optical clear resin is lowered.