Abstract:
A display device includes a housing, a flexible display panel, a light receiving sensor, and an area calculator. The flexible display panel is coupled to the housing and displays a reference image and an output image. The flexible display panel has an exposed area with a size that varies with movement of the flexible display panel in a first direction relative to the housing. The sensor senses the reference image and generates sensing data based on the reference image. The area calculator calculates the exposed area of the flexible display panel based on the sensing data.
Abstract:
During a period when an emission control signal is supplied to an emission control line connected to the pixel, a change in the voltage level of one node in the pixel, due to first leakage current through a first transistor and a second leakage current through a second transistor of the pixel, is compensated for by third leakage current through a third transistor in the pixel.
Abstract:
A 2-dimensional (2D)/3-dimensional (3D) image display device generates 2D or 3D image data according to an input image signal and displays them on a display unit. The display unit includes a display panel for displaying an image in response to the 2D or 3D image data and an optical element layer operative during first and second driving modes in accordance with the 3D and 2D image data. A controller converts the optical element layer to be in the first driving mode in a first period before a 3D image signal is displayed when the input image signal changes from a 2D image signal to the 3D image signal, and converts the optical element layer to be in the second driving mode in a second period after the 2D image signal is displayed when the input image signal changes from the 3D image signal to the 2D image signal.
Abstract:
Provided are a flexible display apparatus and a method of operating the same. The flexible display apparatus includes: a display unit that displays an image and is flexible; and a sensor for detecting an approach of an object to a bent space of the display unit while the display unit is bent. The flexible display apparatus may use a proximity touch as a user interface by detecting an approach of an object, by disposing a sensor in a region adjacent to a display unit or on the display unit.
Abstract:
A display device includes a display panel, a data driver, a scan driver, and a light emitting driver. The display panel includes a first display area and a second display area. The display panel displays a first image on the first display area and the second display area in a first mode, and displays a second image on the first display area in a second mode. The light emitting driver activates emission control signals applied to the first display area and the second display area in the first mode. The light emitting driver activates emission control signals applied to the second display area during a first partial frame in the second mode, and maintains the emission control signals applied to the second display area in a deactivation state during a plurality of second partial frames in the second mode.
Abstract:
A pixel includes: a storage capacitor connected between a first power supply voltage and a gate node; a first transistor including a gate electrode connected to the gate node; a second transistor to transfer a data signal to a source of the first transistor in response to a scan signal; a third transistor to diode-connect the first transistor in response to the scan signal, and including first and second sub-transistors serially connected between the gate node and a drain of the first transistor; a fourth transistor to transfer an initialization voltage to the gate node in response to an initialization signal, and including third and fourth sub-transistors serially connected between the gate node and the initialization voltage; and an organic light emitting diode including a cathode connected to a second power supply voltage. At least one of the second and fourth sub-transistors includes a bottom electrode.
Abstract:
A display device includes a display panel including a first partial panel region and a second partial panel region, and a panel driver which drives the display panel. The panel driver determines a first driving frequency for the first partial panel region and a second driving frequency for the second partial panel region. In a case where the first driving frequency and the second driving frequency are different from each other, the panel driver sets a boundary portion including a boundary between the first partial panel region and the second partial panel region, and determines a third driving frequency for the boundary portion to be between the first driving frequency and the second driving frequency.
Abstract:
A display device includes a display panel, a data driver, a scan driver, and a light emitting driver. The display panel includes a first display area and a second display area. The display panel displays a first image on the first display area and the second display area in a first mode, and displays a second image on the first display area in a second mode. The light emitting driver activates emission control signals applied to the first display area and the second display area in the first mode. The light emitting driver activates emission control signals applied to the second display area during a first partial frame in the second mode, and maintains the emission control signals applied to the second display area in a deactivation state during a plurality of second partial frames in the second mode.
Abstract:
Provided is a scan driver of a display device, and the scan driver includes a driving circuit and a masking circuit. The driving circuit includes a control circuit, a first output circuit, and a second output circuit. The control circuit outputs a first control signal and a second control signal. The first output circuit is connected to a first output terminal which outputs a first scan signal and a first voltage terminal and operates in response to a first control signal. The second output circuit is connected to a first output terminal and a second voltage terminal and operates in response to a second control signal. The masking circuit outputs a second scan signal to a second output terminal in response to the first control signal and the second control signal and is connected to an input terminal to which a masking signal is supplied.
Abstract:
Provided is a display device. The display device includes a display panel that includes a first display region and a second display region, a data driving circuit configured to drive a plurality of data lines, a scan driving circuit configured to drive a plurality of scan lines, and a driving controller configured to control the data driving circuit and the scan driving circuit so as to operate the first display region and the second display region at different frequencies when an operation mode is a multi-frequency mode, wherein the driving controller changes the operation mode to a normal mode when a difference between an image signal of a current frame of the first display region and an image signal of a previous frame of the first display region is equal to or greater than a reference value during the multi-frequency mode.