Abstract:
A display device includes: a substrate on which is disposed: an organic light emitting element which generates and emits light with which an image is displayed; a thin film transistor connected to the organic light emitting element and with which the organic light emitting element is controlled to emit the light; an interlayer insulating layer disposed between the thin film transistor and the organic light emitting element, the interlayer insulating layer including an organic material; and a capping layer disposed between the interlayer insulating layer and the organic light emitting element, the capping layer including an inorganic material. The interlayer insulating layer disposed between the thin film transistor and the organic light emitting element does not have photosensitivity and does not include sulfur.
Abstract:
A display device includes a substrate including a display area and a non-display area surrounding the display area, a light emitting structure disposed on the substrate in the display area, a thin film encapsulation layer disposed on the light emitting structure, an optical structure including a first refractive pattern and a second refractive pattern, and a partition wall disposed on the substrate in the non-display area and surrounding the second refractive pattern. The first refractive pattern is disposed on the thin film encapsulation layer, and overlaps the light emitting structure. The second refractive pattern covers the first refractive pattern, has a refractive index smaller than a refractive index of the first refractive pattern, and includes an organic material.
Abstract:
A display panel includes a transmission area, a boundary area adjacent to the transmission area, a display area adjacent to the boundary area, an overcoat layer in the boundary area, a light emitting element in the display area, a first refractive layer on the light emitting element and including the same material as the overcoat layer, and a second refractive layer on the first refractive layer and having a refractive index less than a refractive index of the first refractive layer.
Abstract:
A display device includes a substrate, a transistor on the substrate, a pixel electrode connected to the transistor, a bank layer disposed on the pixel electrode and defining a pixel opening overlapping the pixel electrode, an emission layer in the pixel opening, a common electrode on the emission layer and the bank layer, an encapsulation layer on the common electrode, a sensing electrode on the encapsulation layer, a first insulating layer disposed on the encapsulation layer and overlapping the pixel opening, a second insulating layer on the first insulating layer, and a third insulating layer surrounding the first insulating layer. A refractive index of the first insulating layer, a refractive index of the second insulating layer, and a refractive index of the third insulating layer are different from one another, and the refractive index of the first insulating layer is greater than the refractive index of the third insulating layer.
Abstract:
A display device includes a first substrate, a first electrode disposed on the first substrate, an emission layer disposed on the first electrode, a second electrode disposed on the emission layer, a high refractive index member disposed on the second electrode, overlapping the emission layer, and having a first refractive index, a low refractive index member disposed between the high refractive index member and the emission layer and having a second refractive index smaller than the first refractive index, a capping member disposed between the low refractive index member and the emission layer, and a second substrate overlapping at least a portion of the first substrate and disposed on the high refractive index member.
Abstract:
Provided is a display device that includes a display panel including a plurality of light emitting areas and a non-light emitting area between the light emitting areas, an insulating layer disposed on the display panel, a first conductive pattern overlapping the non-light emitting area and directly disposed on the insulating layer, a color filter layer overlapping the light emitting areas and disposed on the insulating layer, a first insulating layer disposed on the first conductive pattern and the color filter layer and in which opening parts overlapping the light emitting areas are defined, and a second conductive pattern overlapping the non-light emitting area and disposed on the first insulating layer.
Abstract:
An exposure mask for forming a pattern in a photosensitive material includes a mask substrate which is disposed facing the photosensitive material; a body portion on the mask substrate and corresponding to a shape of the pattern at a distance furthest from the exposure mask; and a plurality of branch portions on the mask substrate and each extending outward from an outer edge of the body portion, in a plan view. The pattern comprises a contact hole of a display device.
Abstract:
The present invention relates to a thin film transistor array panel and a manufacturing method thereof that prevent disconnection of wiring due to misalignment of a mask, and simplify a process and reduce cost by reducing the number of masks. The thin film transistor array panel according to the disclosure includes a source electrode enclosing an outer part of the first contact hole and formed on the second insulating layer; a drain electrode enclosing an outer part of the second contact hole and formed on the second insulating layer; a first connection electrode connecting the source region of the semiconductor layer and the source electrode through the first contact hole; and a second connection electrode connecting the drain region of the semiconductor layer and the drain electrode through the second contact hole.
Abstract:
A display device includes a substrate including a display area and a non-display area surrounding the display area, a light emitting structure disposed on the substrate in the display area, a thin film encapsulation layer disposed on the light emitting structure, an optical structure including a first refractive pattern and a second refractive pattern, and a partition wall disposed on the substrate in the non-display area and surrounding the second refractive pattern. The first refractive pattern is disposed on the thin film encapsulation layer, and overlaps the light emitting structure. The second refractive pattern covers the first refractive pattern, has a refractive index smaller than a refractive index of the first refractive pattern, and includes an organic material.
Abstract:
A method of manufacturing a display device, including forming a first sensing insulating layer on a display panel comprising an active area and a peripheral area; forming a first conductive layer on the first sensing insulating layer; forming a second sensing insulating layer to cover the first conductive layer; forming a second conductive layer comprising a conductive material on the second sensing insulating layer; forming a passivation layer on the second conductive layer; substantially simultaneously etching the second conductive layer and the passivation layer through a photolithography process; and forming a third sensing insulating layer to cover the passivation layer. The passivation layer includes an inorganic material.