Abstract:
An electronic device includes an organic layer disposed in a bendable region and a connection wiring disposed on the organic layer. The connection wiring is connected to the signal lines connected to pixels of a display unit. The organic layer and the connection wiring in the bendable region include the same materials as those in an input sensing unit.
Abstract:
A method of manufacturing a display apparatus is presented. The method includes sequentially forming a conductive layer and a low reflection layer above a substrate; forming a first low reflection layer including a lower layer having conductivity and an upper layer above the lower layer, a pixel electrode, and a low reflection etching layer above the pixel electrode by patterning the conductive layer and the low reflection layer; forming a pixel-defining layer above the first low reflection layer and having an opening exposing at least a part of the low reflection etching layer; exposing the pixel electrode by etching at least a part of the low reflection etching layer by using the pixel-defining layer as a mask; forming an intermediate layer above the exposed pixel electrode, the intermediate layer comprising an organic emission layer; and forming an opposite electrode above the intermediate layer.
Abstract:
A display apparatus includes: a substrate; a pixel electrode above the substrate; a first low reflection layer spaced apart from the pixel electrode at a same layer as the pixel electrode and comprising a lower layer having conductivity and an upper layer above the lower layer; a pixel-defining layer above the first low reflection layer and having an opening exposing at least a part of the pixel electrode; an intermediate layer above the pixel electrode and comprising an organic emission layer; and an opposite electrode above the intermediate layer.
Abstract:
A display apparatus includes a first insulating substrate including a front surface that provides an image and a rear surface opposite to the front surface, a low reflection layer provided on the rear surface, a gate wiring part provided on the low reflection layer, a data wiring part provided on the rear surface, the data wiring part that is insulated from the gate wiring part; and a pixel which is connected to the data wiring part and displays the image, where the low reflection layer includes a polymer resin having a black color.
Abstract:
A display apparatus includes a base substrate and a buffer layer disposed on the base substrate. The display apparatus further includes an oxide semiconductor layer disposed on the buffer layer and including a source electrode, a drain electrode, and a channel portion. The display apparatus further includes a gate insulating layer disposed on the channel portion, a gate electrode disposed on the gate insulating layer, and a protective layer disposed on the gate electrode and the buffer layer and having a contact hole. The display apparatus further includes a transparent electrode overlapping a portion of the protective layer and electrically connected to one of the source electrode and the drain electrode through the contact hole. The transparent electrode includes a transparent metal layer and a transparent conductive oxide layer overlapping the transparent metal layer.
Abstract:
A touch panel is manufactured by a method that decreases undesirable reflections of external light while improving the visibility of emitted light. The touch panel includes a base layer including an active region responsive to an external touch to generate an electronic signal and a peripheral region adjacent to the active region, and a first conductive pattern disposed on the active region and a second conductive pattern disposed on the peripheral region, each of the first conductive pattern and the second conductive pattern including a conductive layer having an external light reflectivity and a darkening layer disposed over the conductive layer. External light reflectivity of each of the first and second conductive patterns is lower than that of the conductive layer.
Abstract:
A flexible display device including a flexible substrate and a conductive pattern. The flexible substrate includes a bending part in which a bending occurs. At least a portion of the conductive pattern is disposed on the bending part and the conductive pattern includes grains. Each grain has a grain size of about 10 nm to about 100 nm.
Abstract:
A display apparatus includes: a display module in which a folding area foldable with respect to a virtual folding axis on a plane and first and second non-folding areas adjacent to both sides of the folding area are defined and which is configured to display an image; a support plate below the display module; and an adhesion film between the display module and the support plate. The support plate includes a first support plate bonded to the adhesion film on the first non-folding area, and a second support plate bonded to the adhesion film on the second non-folding area. The first support plate includes a plurality of first protrusions protruding toward the second support plate, the second support plate includes a plurality of second protrusions protruding toward the first support plate, and the first and second protrusions are alternately arranged with respect to each other.
Abstract:
An organic light emitting display device includes a display panel and a touch screen. The display panel includes a display region that includes a light emitting region and a peripheral region surrounding the light emitting region, a pad region spaced apart from the display region, and a bending region located between the display region and the pad region. The touch screen is positioned on the display panel and includes a plurality of touch screen electrodes and an organic insulation structure. The plurality of touch screen electrodes is located in the display region. The organic insulation structure is positioned to cover the plurality of touch screen electrodes in the display region, and extends in a first direction from the display region into the bending region and the pad region.
Abstract:
A display device includes a display panel includes a substrate divided into a light-emitting region and a non-light-emitting region including a sensing area, a pixel disposed on the light-emitting region, and a pixel-defining layer disposed on the non-light-emitting region, and a sensing panel which is disposed on the display panel and includes a sensing transistor configured to sense light that is emitted from the pixel and reflected by an external object. The sensing transistor overlaps the sensing area in a first direction parallel to a thickness direction of the display panel, is spaced apart from the light-emitting region in a second direction perpendicular to the first direction, and generates a current by receiving the light. The generated current may be used to sense light which is emitted from the pixel and reflected by an external object, such as a fingerprint, to allow the display to act as a biometric sensor.