Abstract:
A pixel circuit is provided which includes a light-emitting element; a driving transistor configured to control an amount of current supplied from a first power line to the light-emitting element according to a pixel voltage; a capacitor having one end connected to a second power line and the other end connected to a gate of the driving transistor and configured to hold the pixel voltage; a first switch transistor configured to selectively switch the pixel voltage provided through a data signal line into the capacitor; and a second switch transistor configured to selectively connect the first power line and the second power line. The first and second power lines are separated during a period where the capacitor is charged by the pixel voltage, and are shorted during a period where the driving transistor operates according to the pixel voltage.
Abstract:
A display circuit includes a plurality of pixel circuits and a shared compensation transistor. Each pixel circuit includes a driving transistor to control light emission of a light emitter. The compensation transistor is to compensate the threshold voltages of the driving transistors of the pixel circuits.
Abstract:
A voltage control circuit of a display device includes a first power line, a second power line, a third power line, and a filter circuit. The second power line is connected to the first power line at a central portion of a predetermined area. The third power line is in the predetermined area. The filter circuit is between the second and third power lines, and includes at least one element having a larger resistance value per unit length than a resistance value per unit length of at least one of the second or third power lines.
Abstract:
An optoelectronic device includes a first transistor, a second transistor, and a control circuit. The first transistor is electrically connected between a power supply and a light-emitting element, has a gate to receive a gray scale voltage, and supplies the light-emitting element with a driving current corresponding to the gray scale voltage. The second transistor has a gate electrically connected to an electrode of the light-emitting element and a source or drain electrically connected to a circuit including a voltmeter. The control circuit reads a measurement value of the voltmeter when the gate of the first transistor receives the gray scale voltage, and corrects a next gray scale voltage applied to the gate of the first transistor based on the measurement value.
Abstract:
A method for driving a display device includes driving a first pixel circuit based on first and second fields of a frame, and driving a second pixel circuit based on first and second fields of the frame. The first field of the first pixel circuit overlaps the second field of the second pixel circuit. The second field of the first pixel circuit overlaps the first field of the second pixel circuit. Operations performed in the first field include storing a gray scale data voltage, and operations performed in the second field include supplying an amount of current to a light emitter based on the stored gray scale data voltage. The first and second pixel circuits are in adjacent rows of the display device.
Abstract:
A pixel circuit including a light emitting element outputting a gray scale based on a current supplied thereto, a first transistor configured to control an amount of current supplied to the light emitting element based on a gray scale data voltage supplied to a gate electrode of the first transistor, a second transistor connected between the gate electrode of the first transistor and an initialization voltage, a third transistor connected between the gate electrode of the first transistor and a first terminal of the first transistor; a fourth transistor connected between the first terminal of the first transistor and the light emitting element, and a fifth transistor connected between a second terminal of the first transistor and a data line. The data line is selectively supplied with the gray scale data voltage and a power supply voltage for light emitting of the light emitting element to the fifth transistor.
Abstract:
A display device includes a pixel circuit having a driving transistor for driving a light-emitting element based on a gradation voltage held by a holding capacitor. The display device performs a first writing of gradation data using a first initialization voltage and a second writing of the gradation data using a second initialization voltage.
Abstract:
A pixel includes five transistors and a capacitor. A first transistor controls current to be supplied to a light-emitting element. A second transistor is connected between a gate electrode of the first transistor and a first power supply. A third transistor is connected between the gate electrode of the first transistor and a second terminal of the first transistor. The capacitor is coupled between the third transistor and the second terminal of the first transistor. The fourth transistor is connected between the second terminal of the first transistor and a second power supply. The fifth transistor is connected between the second terminal of the third transistor and a signal line. The capacitor may be the only capacitor in the pixel, and the signal line may receive an initialization voltage and a gray scale data voltage.
Abstract:
A driving method of an electro-optic device includes initializing a gate voltage of a driving transistor; and performing a data write operation where a threshold voltage of the driving transistor is compensated by turning on a first transistor and a second transistor connected in series between a drain and a gate of the driving transistor and a voltage is provided to a capacity element connected to the gate of the driving transistor to hold a voltage of the compensated data signal as a gate voltage. The first transistor is at a drain side of the driving transistor and the second transistor is between the first transistor and a gate side of the driving transistor. When the data write operation ends, the second transistor is first turned off and, subsequently, the first transistor is turned off. The second transistor is again turned on after the first transistor is turned off.
Abstract:
An optoelectronic device includes a driving transistor, a correction transistor, and a control circuit. The driving transistor adjusts a first current from a power supply based on a voltage stored in a first capacitor. The driving transistor supplies the adjusted first current to the light-emitting element. The correction transistor is electrically connected on a path of a second current flowing from the power supply to the first capacitor, and adjusts the second current based on a voltage stored in a second capacitor. The control circuit controls the second capacitor to store a gray scale voltage while the first current flows, and controls flow of the second current to update the voltage stored in the first capacitor while the first current is blocked.