Abstract:
A display device includes a display panel including a front surface and a rear surface, a first circuit board electrically connected to a first side of the display panel, a second circuit board electrically connected to a second side opposite to the first side of the display panel, a third circuit board disposed on the rear surface and electrically connected to the first circuit board and the second circuit board, the third circuit board extending in a first direction, and a support plate disposed on the rear surface. The display panel is foldable along a folding line extending in a second direction. The support plate has a first opening extending along the folding line, and an opening pattern near a portion of the first opening. The third circuit board overlaps the portion of the first opening. The opening pattern includes slits and the third circuit board overlaps the slits.
Abstract:
A display device may include a light emitting element, a buffer layer, a gate insulation layer, and a switching element. A refractive index of the gate insulation layer may be equal to a refractive index of the buffer layer. The switching element may be electrically connected to the light emitting element and may include an active layer and a gate electrode. The active layer may be positioned between the buffer layer and the gate insulation layer and may directly contact at least one of the buffer layer and the gate insulation layer. The gate insulation layer may be positioned between the active layer and the gate electrode and may directly contact at least one of the active layer and the gate electrode.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A thin film transistor array panel includes: a gate line including a gate electrode; a first gate insulating layer on the gate line; a semiconductor layer on the first gate insulating layer and overlapping the gate electrode; a second gate insulating layer on the semiconductor layer and the first gate insulating layer, and an opening in the second gate insulating layer and through which the semiconductor layer is exposed; drain and source electrodes on the second gate insulating and semiconductor layers and facing each other; a first field generating electrode; and a second field generating electrode connected to the drain electrode. The semiconductor layer includes an oxide semiconductor layer, and first and second auxiliary layers on the oxide semiconductor layer and separated from each other. An edge of the drain and source electrodes is disposed inside an edge of the first and second auxiliary layers, respectively.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A transparent display substrate, a transparent display device, and a method of manufacturing a transparent display device, the substrate including a base substrate including a pixel area and a transmission area; a pixel circuit on the pixel area of the base substrate; an insulation layer covering the pixel circuit on the base substrate; a pixel electrode selectively disposed on the pixel area of the base substrate, the pixel electrode being electrically connected to the pixel circuit at least partially through the insulation layer; and a transmitting layer structure selectively disposed on the transmission area of the base substrate, the transmitting layer structure including at least an inorganic material, the inorganic material consisting essentially of silicon oxynitride.
Abstract:
A display device may include a first substrate, a lower barrier layer disposed on a rear surface of the first substrate, an upper barrier layer disposed on a front surface of the first substrate, a display structure disposed on the upper barrier layer, and a second substrate disposed on the display structure.
Abstract:
A transparent organic light emitting display device may include a transparent base substrate, a semiconductor device disposed on the transparent base substrate, a display structure electrically connected to the semiconductor device, and a protection layer including a blue dye disposed on the display structure. The protection layer may improve the transparency of the transparent base substrate by calibrating discoloration of the transparent base substrate. Thus, the transparent display device including the protection layer may ensure an enhanced transparency. Further, the transparent display device may have an enhanced mechanical strength and an increased heat resistance because of the transparent base substrate.
Abstract:
A thin film transistor array panel is disclosed. The thin film transistor array panel may include a gate line disposed on a substrate and including a gate electrode, a semiconductor layer including an oxide semiconductor disposed on the substrate, a data wiring layer disposed on the substrate and including a data line crossing the gate line, a source electrode connected to the data line and a drain electrode facing the source electrode, a polymer layer covering the source electrode and the drain electrode, and a passivation layer disposed on the polymer layer. The data wiring layer may include copper or a copper alloy and the polymer layer may include fluorocarbon.
Abstract:
A display device includes: a display module; a plate on one surface of the display module; and an adhesive layer between the display module and the plate, wherein the plate includes a folding area and a folding peripheral area, the folding area of the plate includes a plurality of grooves, and the adhesive layer overlaps a portion of the folding area.