Abstract:
A display device may include a backlight unit, a display panel, and a backlight driver, and a panel driver. The backlight unit may include light source blocks including a first light source block. The display panel may include dimming regions including a first dimming region and respectively overlapping the light source blocks. The first dimming region may overlap the first light source block. The backlight driver may control a turn-on period and a turn-off period of each of the light source blocks. The panel driver may sequentially provide scan signals to the dimming regions for controlling light transmission of the dimming regions. A turn-off period of the first light source block may start before a scan period of the first dimming region and may end after the scan period of the first dimming region. The first dimming region may receive corresponding scan signals in the scan period.
Abstract:
A display apparatus includes a display panel, a data driving circuit, and a gate driving circuit. The display panel is configured to display an image and includes a gate line and a data line. The data driving circuit is configured to output a data signal to the data line. The gate driving circuit is configured to output a gate signal to the gate line and to control a kick-back time of the gate signal according to a temperature of the display panel. The kick-back time is a time when the gate signal is decreased from a gate on voltage to a kick-back voltage that is between the gate on voltage and a gate off voltage.
Abstract:
A display device includes gate lines, data lines, pixels, a gate driver, a data driver, and a timing controller. The gate lines extend in a first direction. The data lines extend in a second direction crossing the first direction. Each of the pixels is connected to a corresponding gate line of the gate lines and a corresponding data line of the data lines. The gate driver is configured to drive the gate lines. The data driver is configured to drive each data line of the data lines in response to a corresponding data signal. The timing controller is configured to, in response to an image signal and a control signal, apply the corresponding data signals to the data driver and control the gate driver. Each corresponding data signal reflects a kickback compensation value corresponding to a distance between the gate driver and the corresponding data line in the first direction.
Abstract:
A gate driving module includes a gate driver and a gate signal generator. The gate driver generates a vertical start signal, a plurality of gate clock signals and a plurality of inverse gate clock signals based on a vertical start control signal, a plurality of gate clock control signals, a gate on voltage, a first gate off voltage and a second gate off voltage. The number of the gate clock signals is P. The number of the inverse gate clock signals is P. The number of the gate clock control signals is P. P is a positive integer equal to or greater than two. The gate signal generator generates a gate signal based on the vertical start signal, the gate clock signals and the inverse gate clock signals.
Abstract:
A display device includes a display panel which displays an image based on output image data converted from input image data, an input voltage controller which determines a maximum scale factor and a minimum scale factor based on a power control mode set by a user, calculates a maximum driving voltage based on the maximum scale factor and the minimum scale factor, and calculates an optimal voltage based on the maximum driving voltage, a power supply which generates an input voltage based on the optimal voltage, and a driving voltage generator which generates a driving voltage provided to the display panel using the input voltage.
Abstract:
A display device includes a display unit which includes pixels, an emission driver which applies an emission control signal for allowing the pixels to emit light, and a signal controller which receives a data enable signal including an active period and a blank period during which an image signal is inputted and outputs a control signal for controlling the emission driver such that an emission period of the pixels is changed in response to a blank period.
Abstract:
A method of driving a display panel, the method including outputting video data to a display panel during an N-th (N is a natural number) frame, outputting video data to the display panel during an (N+1)-th frame, comparing polarities of video data of the N-th frame and corresponding polarities of video data of the (N+1)-th frame, and controlling polarities of video data of an (N+2)-th frame, according to the result of the comparison.
Abstract:
A display device includes a display panel, a timing controller, a data driver, a gate driver and a backlight unit. The gate driver sequentially outputs gate signals to gate lines. The backlight unit performs an on-operation during a high section of a backlight control signal and an off-operation during a low section of the backlight control signal. The gate signals includes first gate signals that are output during the high section of the backlight control signal and have a first pulse width and second gate signals that are output during the low section of the backlight control signal and have a second pulse width greater than the first pulse width.
Abstract:
A display device includes a display panel, a timing controller, a data driver, a gate driver and a backlight unit. The gate driver sequentially outputs gate signals to gate lines. The backlight unit performs an on-operation during a high section of a backlight control signal and an off-operation during a low section of the backlight control signal. The gate signals includes first gate signals that are output during the high section of the backlight control signal and have a first pulse width and second gate signals that are output during the low section of the backlight control signal and have a second pulse width greater than the first pulse width.