Abstract:
A display device includes: a substrate; a gate line disposed on the substrate and extending in a first direction; a data line insulated from the gate line and extending in a second direction intersecting the first direction; a pixel electrode disposed in a pixel region defined by the gate line and the data line; a source electrode connected to the data line; a drain electrode spaced apart from the source electrode; and a color filter layer disposed on the data line, the source electrode, and the drain electrode. The color filter layer includes: a first contact hole exposing the drain electrode, and a second contact hole disposed over at least one of the source electrode and the drain electrode. The pixel electrode is disposed on the color filter layer and is connected to the drain electrode through the first contact hole.
Abstract:
A manufacturing method of a liquid crystal display according to an exemplary embodiment of the present invention includes: a step of preparing a lower panel in which a pixel electrode is formed and which is coated with a lower alignment layer including reactive mesogen; a step of preparing an upper panel in which a common electrode is formed and which is coated with an upper alignment layer including reactive mesogen; a step of forming a display panel assembly by injecting a liquid crystal between the lower panel and the upper panel and bonding the lower panel and the upper panel; a step of pre-tilting the liquid crystal by applying a voltage to the display panel assembly and primarily irradiating ultraviolet rays having a wavelength of 310 nm to 380 nm; and a step of removing remaining reactive mesogen by secondarily irradiating ultraviolet rays having a wavelength of 300 nm to 360 nm to the display panel assembly.
Abstract:
A liquid crystal display includes a substrate, an alignment layer disposed on the substrate and in which a pinhole is defined in the alignment unit, the alignment layer including an alignment unit including a vertical functional group and a photoreactive group, and a repair layer filled in the pinhole, wherein the repair layer and the alignment unit include a solvent and polymers, and the solvent of the repair layer and the alignment unit includes at least two materials with the same content, and a polymer content of the repair layer is less than a polymer content of the alignment unit.
Abstract:
A liquid crystal display device includes first substrate including a display area in which a plurality of pixels are disposed and a non-display area which surrounds the display area, and a light-shielding member disposed on the first substrate, the light-shielding member disposed on boundaries between the plurality of pixels and on the entire non-display area and defining an alignment layer dam pattern, which is in the shape of a recess, in the non-display area, where the alignment layer dam pattern surrounds the display area and has step-type height differences on a side of the display area.
Abstract:
A color conversion display panel includes a first color conversion layer and a second color conversion layer disposed on a color conversion substrate and including semiconductor nanocrystals, and a transmission layer, wherein a first distance between the first and second color conversion layers is different from a second distance between one of the first and second color conversion layers and the transmission layer.
Abstract:
A display device including a first substrate, a pixel disposed on the first substrate and including first, second and third sub-pixel electrodes adjacent to each other, a second substrate spaced from the first substrate, a color conversion layer disposed on the second substrate and with a first wavelength conversion layer overlapping with the first sub pixel electrode and a second wavelength conversion layer overlapping with the second sub pixel electrode, a transmissive layer including a first sub-transmissive layer overlapping with the third sub-pixel electrode and a second sub-transmissive layer disposed between the first wavelength conversion layer and the second wavelength conversion layer, and a planarization layer disposed on the color conversion layer and the transmissive layer. Methods of manufacturing display devices having a flatter, planarization layer with reduced variations in thickness also is disclosed.
Abstract:
A display panel includes a first substrate, a second substrate disposed opposite to the first substrate, a first alignment key disposed on the first substrate; and a second alignment key disposed on the second substrate to overlap the first alignment key, where the second alignment key includes a border portion and a groove pattern disposed in a region defined by the border portion.
Abstract:
A composition for an alignment layer includes a polyimide-based compound including a polymerization initiator coupled to a side chain of the polyimide-based compound.
Abstract:
Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
Abstract:
Provided are display device and method for fabricating the same. According to an aspect of the present disclosure, there is provided a display device comprising: a first substrate; at least one wavelength conversion layer disposed on the first substrate; a capping layer disposed on the wavelength conversion layer and comprising a porous layer; and a first polarizing layer disposed on the capping layer.