Abstract:
A display device may include a substrate and a first roof layer portion that is formed of a roof layer material and overlaps the substrate in a direction, the direction is perpendicular to a surface of the substrate. A lateral surface of the first roof layer portion is disposed in a plane. The display device may further a second roof layer portion formed of the roof layer material and separated from the first roof layer portion. The display device may further a common electrode portion disposed between the first roof layer portion and the substrate in the direction. A lateral surface of the common electrode portion is disposed in the plane or is spaced from the lateral surface of the first roof layer portion in a second direction parallel to the surface of the substrate. The display device may further a pixel electrode disposed between the first common electrode portion and the substrate.
Abstract:
A color conversion panel according to an exemplary embodiment of the present invention includes an substrate, first, second, and third color conversion layers on the substrate and configured to emit lights of different colors, and a light blocking member between adjacent ones of the first, second, and third color conversion layers, wherein any one of the first, second, and third color conversion layers and the light blocking member is soluble.
Abstract:
The inventive concept relates to a display device preventing from generating a reflection light at a portion region of a thin film transistor and a manufacturing method thereof, and a display device according to an exemplary embodiment of the inventive concept includes: a substrate; a thin film transistor; a pixel electrode; a light blocking member formed on the pixel electrode to overlap the thin film transistor, the light blocking member being formed on an opposite side of the thin film transistor with respect to the pixel electrode, a common electrode formed on the pixel electrode to be spaced apart from the pixel electrode with a plurality of microcavities interposed therebetween; a roof layer formed on the common electrode; an injection hole exposing a portion of each microcavity; a liquid crystal layer filling the microcavity; and an encapsulation layer formed on the roof layer.
Abstract:
A display device may include a substrate and a first roof layer portion that is formed of a roof layer material and overlaps the substrate in a direction, the direction is perpendicular to a surface of the substrate. A lateral surface of the first roof layer portion is disposed in a plane. The display device may further a second roof layer portion formed of the roof layer material and separated from the first roof layer portion. The display device may further a common electrode portion disposed between the first roof layer portion and the substrate in the direction. A lateral surface of the common electrode portion is disposed in the plane or is spaced from the lateral surface of the first roof layer portion in a second direction parallel to the surface of the substrate. The display device may further a pixel electrode disposed between the first common electrode portion and the substrate.
Abstract:
An optical device for realizing augmented reality comprises a lens comprising a first surface and side surfaces, a display device disposed on a first side surface among the side surfaces of the lens and displaying a first image in a first area and a second image in a second area, a first reflector disposed in the lens and reflecting the first image incident on the first side surface of the lens to the first surface, a second reflector disposed in the lens and reflecting the second image incident on the first side surface of the lens to the first surface, a first condenser disposed between the lens and the first area of the display device and focusing the first image on the first reflector, and a second condenser disposed between the lens and the second area of the display device and focusing the second image on the second reflector.
Abstract:
An exemplary embodiment provides a liquid crystal display including: a substrate configured to include a display area and a peripheral area; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer disposed to face the pixel electrode; a capping layer disposed on the roof layer; and a blocking film disposed in the peripheral area to surround a lateral surface of the capping layer, wherein a plurality of microcavities are formed between the pixel electrode and the roof layer in the display area, and the microcavities form a liquid crystal layer including a liquid crystal material, wherein a level of a top surface of the blocking film is higher than that of a top surface of the liquid crystal layer.
Abstract:
A liquid crystal display includes: a substrate; a reference electrode disposed on the substrate; a reference electrode passivation layer disposed on the reference electrode; a thin film transistor disposed on the reference electrode passivation layer; a pixel electrode connected to the thin film transistor; a pixel electrode passivation layer disposed on a portion of the pixel electrode; a light blocking member disposed on the pixel electrode passivation layer; a color filter disposed so as to face the pixel electrode; a micro cavity disposed between the pixel electrode and the color filter; and a liquid crystal material disposed in the micro cavity.
Abstract:
A liquid crystal display includes a substrate, a thin film transistor, a first protection layer, a pixel electrode, a light blocking layer, a second protection layer, and a roof layer. The thin film transistor is disposed on the substrate. The first protection layer is disposed on the thin film transistor. The pixel electrode is disposed on the first protection layer. The light blocking layer is disposed on the pixel electrode to cover the thin film transistor. The second protection layer is disposed on the light blocking layer. The roof layer is disposed to face the pixel electrode, wherein a plurality of microcavities having injection holes are formed between the pixel electrode and the roof layer. The microcavities comprise liquid crystal molecules, and the first protection layer and the second protection layer have different etch rates.
Abstract:
A display device includes a substrate, a thin film transistor disposed on the substrate, a pixel electrode connected to the thin film transistor, a common electrode disposed on the pixel electrode and spaced apart from the pixel electrode, where a microcavity is defined between the pixel electrode and the common electrode, and a common electrode cutout is defined in the common electrode; a roof layer disposed on the common electrode, a liquid crystal injection hole formed through the common electrode and the roof layer, where the liquid crystal injection hole exposes a portion of the microcavity, a liquid crystal layer disposed in the microcavity, and an encapsulation layer disposed on the roof layer, where the encapsulation layer covers the liquid crystal injection hole and seals the microcavity.
Abstract:
A display device includes a plurality of pixel areas and a thin film transistor disposed on a substrate. A first light blocking member is disposed on the thin film transistor, and a contact hole is disposed in the first light blocking member to expose a portion of the thin film transistor. A pixel electrode is disposed on the first light blocking member, and connected with the thin film transistor through the contact hole. A second light blocking member is disposed on the pixel electrode overlapping with the contact hole. A roof layer is disposed spaced apart from the pixel electrode with a microcavity interposed therebetween. An injection hole is disposed below the roof layer to expose a portion of the microcavity, and a liquid crystal layer is disposed in the microcavity. An encapsulation layer is disposed on the roof layer covering the injection hole so as to seal the microcavity.