Abstract:
A liquid crystal display including: a liquid crystal display including: a first polarizer, a second polarizer, a gate line, a data line, a thin film transistor, a pixel electrode, a first light blocking member, a second light blocking member, a liquid crystal layer, and a common electrode; a color conversion panel including a third light blocking member and a color conversion media layer, the color conversion panel being disposed on the liquid crystal panel; and a backlight assembly configured to supply light to the liquid crystal panel and the color conversion panel, wherein the first light blocking member overlaps the data line, wherein the second light blocking member is disposed between the first light blocking member and the third light blocking member, the third light blocking member overlapping the first light blocking member, and wherein the third light blocking member overlaps the second light blocking member.
Abstract:
A display panel includes: a plurality of pixels; and a first phase shifting layer and a second phase shifting layer, which overlap the pixels, where the first phase shifting layer and at least a portion of the second phase shifting layer are alternately arranged with each other, and a phase difference between light having a predetermined wavelength transmitted through the first phase shifting layer and light having the predetermined wavelength transmitted through the second phase shifting layer is approximately 180 degrees.
Abstract:
A light emitting diode (LED), includes: a substrate; a first electrode connection line disposed on the substrate; a second electrode connection line disposed on the substrate; a first contact metal layer disposed on the first electrode connection line; a second contact metal layer disposed on the second electrode connection line; a light emitting unit disposed on the first contact metal layer and the second contact metal layer; a partition disposed on the substrate and about the light emitting unit; and an encapsulation layer covering the light emitting unit. The encapsulation layer includes a light conversion material.
Abstract:
A display panel includes: first and second substrates, each including a display area and a peripheral area in a plan view; and a sealing portion disposed between the first and second substrates. An edge of the display panel includes straight-lined and shaped edges, and the shaped edge includes a curved portion. An edge surface of the first substrate at the straight-lined edge, an edge surface of the second substrate at the straight-lined edge and an edge surface of the sealing portion at the straight-lined edge collectively define a first convex surface, an edge surface of the first substrate at the shaped edge, an edge surface of the second substrate at the shaped edge and an edge surface of the sealing portion at the shaped edge collectively define a second convex surface, and shapes of the first and second convex surfaces are different from each other.
Abstract:
A display device is provided. The display device includes a display panel including first and second display substrates that face each other, having an overlap area in which the first and second display substrates overlap with each other, and having a protruding area on one side of the overlap area, a sealing member between the first and second display substrates along edges of the overlap area, and at least one chamfered portion including a first chamfered portion, which is formed on at least one side of the protruding area, and a second chamfered portion, which is formed on the overlap area and adjacent to the first chamfered portion, wherein in the second chamfered portion, an end of the first display substrate is positioned beyond an end of the second display substrate.
Abstract:
A color conversion panel according to an exemplary embodiment includes: a substrate; and a plurality of color conversion layers and a transmission layer that are disposed on the substrate, the plurality of color conversion layers including nanocrystals, wherein at least one color conversion layer of the plurality of color conversion layers includes a first color conversion layer and a second color conversion layer, the first color conversion layer is disposed between the substrate and the second color conversion layer, and the first and second color conversion layers are configured so that a wavelength of light color-converted in the first color conversion layer is shorter than a wavelength of light color-converted in the second color conversion layer.
Abstract:
A display device is provided. The display device includes a display panel including first and second display substrates that face each other, having an overlap area in which the first and second display substrates overlap with each other, and having a protruding area on one side of the overlap area, a sealing member between the first and second display substrates along edges of the overlap area, and at least one chamfered portion including a first chamfered portion, which is formed on at least one side of the protruding area, and a second chamfered portion, which is formed on the overlap area and adjacent to the first chamfered portion, wherein in the second chamfered portion, an end of the first display substrate is positioned beyond an end of the second display substrate.
Abstract:
An exemplary display device includes: a display panel; a color conversion panel overlapping the display panel; and an optical bonding layer positioned between the display panel and the color conversion panel. The color conversion panel includes: a substrate; a color conversion layer and a transmission layer positioned between the substrate and the display panel; a first capping layer having one side facing the color conversion layer and the transmission layer, and another side facing the display panel; a second capping layer positioned between the first capping layer and the display panel; and an optical layer positioned between the first capping layer and the second capping layer and/or between the second capping layer and the optical bonding layer. A refractive index of the optical layer is lower than at least one of a refractive index of the first capping layer and a refractive index of the second capping layer.
Abstract:
A display panel includes: first and second substrates, each including a display area and a peripheral area in a plan view; and a sealing portion disposed between the first and second substrates. An edge of the display panel includes straight-lined and shaped edges, and the shaped edge includes a curved portion. An edge surface of the first substrate at the straight-lined edge, an edge surface of the second substrate at the straight-lined edge and an edge surface of the sealing portion at the straight-lined edge collectively define a first convex surface, an edge surface of the first substrate at the shaped edge, an edge surface of the second substrate at the shaped edge and an edge surface of the sealing portion at the shaped edge collectively define a second convex surface, and shapes of the first and second convex surfaces are different from each other.
Abstract:
A photosensitive resin composition according to an exemplary embodiment of the present invention includes: a nanophosphor; a photo-polymerization initiator including an acetophenone-based initiator; and a photo-polymerization compound, wherein the photo-polymerization initiator further includes at least one among a thioxanthone-based initiator, an oxime-based initiator, and a benzophenone-based initiator.