Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-generation (4G) communication system, such as long-term evolution (LTE). An operation method of a transmitter in a wireless communication system is provided. The method includes applying a filter to data, mapping the data to which the filter is applied to at least one subcarrier, and transmitting the mapped data to a receiver. The filter is determined based on based on the allocated resource.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present disclosure provides a transmission and reception method applying a special resource block structure in a scalable frame structure to integrally support various services in a cellular wireless communication system. According to the present disclosure, it is possible to minimize interference between adjacent resource blocks due to heterogeneous subcarrier spacings between the 5G system and the LTE system or the 5G system to improve system performance.
Abstract:
The present invention relates to a transceiving method and apparatus that enable QAM signal transmission in a filter bank multi-carrier (FMBC) communication system and provides, in particular, a transceiving method and apparatus that enable quadrature amplitude modulation (QAM) signal transmission without intrinsic interference by separating filtering between a sub-carrier having an even index and a sub-carrier having an odd index, and superimposing and transmitting sub-carriers filtered by means of separation. The thus-rendered present invention is a transmission method in the FBMC communication system, the method comprising the steps of: dividing at least two QAM signals into a plurality of groups; performing filtering on each of the plurality of groups; and superimposing and transmitting the QAM signal in the plurality of groups filtered on a time axis. The present invention relates to a transmission method and apparatus, and a corresponding reception method and apparatus.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of a reception device in a wireless environment according to various embodiments of the present disclosure may include receiving a signal from a transmission device, identifying that the received signal is modulated based on at least one designated modulation scheme of modulation schemes, based on identifying, generating second values by applying a first circular shift of a first direction to first values relating to first symbols of the signal, and generating third values by applying a second circular shift of a second direction which is different from the first direction, to conjugate complex values of the first values, generating second symbols of the signal based at least in part on the second values and the third values, and obtaining data about the signal based at least in part on the second symbols.
Abstract:
A communication scheme and system for converging a 5th generation (5G) communication system for supporting a data rate higher than that of a 4th generation (4G) system with an internet of things (IoT) technology are provided. The communication scheme is applicable to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars, connected cars, health care, digital education, retail, and security and safety-related services) based on the 5G communication technology and the IoT-related technology.
Abstract:
A communication scheme and system for converging a 5th generation (5G) communication system for supporting a data rate higher than that of a 4th generation (4G) system with an internet of things (IoT) technology are provided. The communication scheme is applicable to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars, connected cars, health care, digital education, retail, and security and safety-related services) based on the 5G communication technology and the IoT-related technology.
Abstract:
The present disclosure relates to a fifth generation (5G) or pre-5G communication system supporting a higher data transmission rate since fourth generation (4G) communication systems like long term evolution (LTE). A method for transmitting heterogeneous service data from a base station is provided. The method for transmitting data includes at least one processor configured to control to allocate a first resource by scheduling to provide the first service data to the first terminal, identify whether the second service data to be transmitted to the first terminal or the second terminal is generated using at least some of the first resource during the transmission of the first service data to the first terminal using the first resource, transmit the second service data by allocating the second service data to at least some of the first resource if the second service data is generated, and configure and transmit the second service data.
Abstract:
The present disclosure is related to the 5G or pre-5G communication systems for supporting a higher data transfer rate than that of the 4G communication system, such as LTE. A method according to an embodiment of the present disclosure may include receiving user equipment (UE) status information at least one UE, determining a density and pattern of a measured reference signal (MRS) based on the received UE status information and previously stored status information of active UEs, providing information about the determined density and pattern of the MRS to at least one active UE within a coverage area of the eNB, transmitting the MRS in a predetermined period based on the determined density and pattern, and transmitting the MRS based on the determined density and pattern and data to be provided to the at least one active UE.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate after 4G communication systems such as LTE. A method according to an embodiment of the present invention is a communication method in a base station which communicates via filter bank-based multicarrier signals. The method may comprise the steps of: performing communication by allocating filters having non-orthogonality with respect to a first terminal positioned within a cell; selecting a filter set from among two or more filter sets having orthogonality with respect to a second terminal positioned at the edge of the cell; and performing communication by allocating, to the second terminal, at least one filter among filters included in the selected filter set.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A filter bank-based channel state report and resource allocation method and an apparatus for use in a wireless communication system are provided. The channel state report method of a receiver in a filter bank-based wireless communication system includes receiving filter bank information on at least two filter banks from a transmitter, measuring a channel state of the each of at least two filter banks based on the filter bank information, and transmitting channel state information, which is generated based on the measurement result, to the transmitter.