Abstract:
Provided is an acousto-optic device including an elastic medium; a meta structure formed on a first surface of the elastic medium, and an elastic-wave generating unit which generates an elastic wave in the elastic medium. The meta structure includes a first layer and a second layer that is formed on the first layer. The at least one of the first layer and the second layer includes a predetermined repetitive pattern.
Abstract:
An apparatus and method for recognizing a fingerprint are provided. The apparatus includes a display device including a plurality of pixels configured to be turned on and off based on an image signal, a transparent cover disposed on the display device, the transparent cover including a touch surface through which a touch of a user is input, and a touch sensor configured to recognize a location of the touch through the touch surface. The apparatus further includes a fingerprint sensor configured to detect light that is reflected from the touch surface, based on the fingerprint of the user inputting the touch, and generate a signal, based on the light, and a controller configured to generate the image signal to turn on pixels corresponding to the location among the plurality of pixels, and determine a fingerprint profile of the fingerprint, based on the signal generated by the fingerprint sensor.
Abstract:
A complex spatial light modulator includes a polarization-phase modulator for separating an incident beam into a first beam having a first polarization and a first phase, and a second beam having a second polarization and a second phase, and for outputting the first beam and the second beam; and a beam synthesizer including a prism structure formed of an optical anisotropic material having a first refractive index with respect to the first beam having the first polarization and having a second refractive index, different form the first refractive index, with respect to the second beam having the second polarization, where the beam synthesizer combines the first beam and the second beam.
Abstract:
A holographic display includes: a light source; at least one beam steerer configured to control a propagation direction of a beam emitted from the light source; an optical element configured to condense a beam passing through the at least one beam steerer; and a spatial light modulator configured to form a three-dimensional (3D) image by modulating a beam passing through the at least one beam steerer.
Abstract:
A complex spatial light modulator for modulating a phase and amplitude of a light beam and a 3-dimensional (3D) display including the same are provided. The complex spatial light modulator includes a spatial light modulator modulating a phase of a light beam, a lenticular lens array disposed next to the spatial light modulator, and a volume holographic lens array spaced apart from the lenticular lens array and allowing light beams output from the lenticular lens array to be superimposed and to interfere with each other, and so that the phase and an amplitude of the light beam are simultaneously modulated.
Abstract:
Provided are a complex spatial light modulator and a three-dimensional (3D) image display apparatus. The complex spatial light modulator includes a spatial light modulator configured to modulate a phase of light, a first prism array which is disposed after the spatial light modulator along a path of the light, and including prism units each having a first prism surface and a second prism surface, and a hologram optical device configured to diffract the light that has passed through the first prism array independently from a polarization of the light, where the first prism array and the hologram optical device are configured to modulate the phase and an amplitude of the light.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.
Abstract:
Provided is a waveguide structure including an output grating, a polarization conversion element provided parallel to the output grating, and a polarization separation element provided between the output grating and the polarization conversion element, wherein the polarization separation element is configured to transmit, to the output grating, light having a first polarization direction among light incident on the polarization separation element, and reflect, to the polarization conversion element, light having a second polarization direction different from the light having the first polarization direction among the light incident on the polarization separation element.
Abstract:
A viewing angle expansion plate, which is a multi-pinhole mask, includes a plurality of cell areas; and a plurality of pinholes formed in the plurality of cell areas, wherein each cell area from among the plurality of cell areas corresponds to a respective pixel from among a plurality of pixels in a flat panel display. The flat panel display includes a light source configured to emit parallel light; a flat panel, on which the parallel light is incident, configured to provide a three-dimensional image; and the viewing angle expansion plate.
Abstract:
Provided is an optical device including a first backlight configured to output first light of a first wavelength through a first output coupler, a first lens disposed to face the first output coupler and having a focal length with respect to the first light, a second backlight including a second output coupler, the second backlight being configured to output second light of a second wavelength through the second output coupler, a second lens disposed to face the second output coupler and having different focal lengths with respect to the first light and the second light, a third backlight including a third output coupler, the third backlight being configured to output third light of a third wavelength through the third output coupler, and a third lens disposed to face the third output coupler and having different focal lengths with respect to the first light, the second light, and the third light.