Abstract:
A portable terminal is provided. The portable terminal includes a shielding member attached to an inner surface of an external part, a shielding wall formed on the shielding member, a first coil attached to a surface of the shielding member that faces the inner surface of the external part, and a second coil attached to the surface of the shielding member, with the second coil surrounds the first coil on a same plane and the shielding wall being disposed between the first and second coil.
Abstract:
An electronic device is provided. The electronic device includes a battery; a non-contact near field communication antenna; a wireless charging coil; and a case covering the battery, wherein the wireless charging coil is positioned between the battery and the case, and wherein one of the non-contact near field communication antenna and the wireless charging coil is positioned to surround the other one of the non-contact near field communication antenna and the wireless charging coil.
Abstract:
A method and apparatus for controlling vibration in a portable device are provided. The method includes detecting a user input corresponding to a gesture made on a touch screen by an input device, detecting an action attribute of the portable device corresponding to the user input, determining a first vibration to be output from the input device and a second vibration to be output from the portable device according to the action attribute, and controlling output of the first vibration from the input device and output of the second vibration from the portable device according to the action attribute.
Abstract:
A portable terminal is provided. The portable terminal includes a shielding member attached to an inner surface of an external part, a shielding wall formed on the shielding member, a first coil attached to a surface of the shielding member that faces the inner surface of the external part, and a second coil attached to the surface of the shielding member, with the second coil surrounds the first coil on a same plane and the shielding wall being disposed between the first and second coil.
Abstract:
An apparatus for controlling wireless power transmission includes a near-field wireless communication antenna for receiving wireless power transmission control signals from a power transmitting device at a communication frequency, a near-field wireless communication Integrated Circuit (IC) for delivering wireless power transmission control messages based on the wireless power transmission control signals received through the near-field wireless communication antenna to a power IC, a Wireless Power Transmission (WPT) coil for resonating at a frequency band corresponding to a resonant frequency of the power transmitting device, to receive power supplied from the power transmitting device, and the power IC for controlling output of a constant voltage, using the supply power received by the WPT coil, based on the wireless power transmission control messages from the near-field wireless communication IC.
Abstract:
Methods and an electronic device for providing visual and haptic feedback are provided. At least one first touch made to an object displayed on a touch screen is detected. The object is transformed and displayed in response to movement of the first touch. At least one second touch made to the displayed object is detected. Visual feedback is displayed on the touch screen in response to the second touch, and haptic feedback corresponding to a predetermined haptic pattern is output using a vibration motor.
Abstract:
An apparatus and method are provided for controlling haptic feedback of an input tool for a mobile terminal. The method includes detecting, by the mobile terminal, a hovering of the input tool over an object displayed on a touch screen display of the mobile terminal; identifying a property of the object; and transmitting, to the input tool, a control signal for haptic feedback corresponding to the property of the object.
Abstract:
A method and apparatus for providing, by an electronic device, a haptic effect using an input unit are provided. The method includes detecting a touch of the input unit on a touch screen of the electronic device, displaying a trajectory of the touch, calculating a curve angle of the touch trajectory drawn for a predetermined time period, and transmitting a haptic signal, corresponding to the curve angle, to the input unit.
Abstract:
A terminal device controlling method that provides a haptic effect using a haptic engine is provided, which includes sensing a haptic event, executing a non-physical parameter-based haptic function in a haptic engine so as to determine a vibration pattern corresponding to the haptic event, transferring the vibration pattern from the haptic engine to a device driver, and driving, through the device driver, a vibrator based on the vibration pattern so as to embody a haptic effect.
Abstract:
A portable terminal and a method for providing a haptic effect in the portable terminal are provided. The method includes displaying an application on a touch screen, detecting a touch in a haptic providing region set by a user, and providing a haptic effect corresponding to the haptic providing region in response to the detected touch.