Abstract:
For converging a 5th-Generation (5G) communication system and supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), a channel state information (CSI) acquisition method includes transmitting CSI configuration information to a terminal, selecting a beam for transmitting a beamformed CSI reference signal (BF-CSI-RS) to the terminal, transmitting the BF-CSI-RS to the terminal using the selected beam, and notifying the terminal of a beamforming update. A base station for acquiring CSI in a mobile communication system includes a transceiver configured to transmit and receive signals, and a controller configured to control the transceiver to transmit CSI configuration information to a terminal, to select a beam for transmitting a BF-CSI-RS to the terminal, to transmit the BF-CSI-RS to the terminal using the selected beam, and to notify the terminal of a beamforming update.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to transmission of a reference signal in a wireless communication system, and an operation method of a terminal comprises the steps of: receiving control information for reference signals from a base station; and receiving the reference signals according to the control information. Further, the present invention also comprises embodiments different from the embodiment described above.
Abstract:
An apparatus and method is proved that transmits and receives Reference Signals (RSs) in a wireless communication system using Multiple-Input and Multiple-Output (MIMO). A system adapted to the method is provided. The method includes: determining the number of RS transmission to two or more antennas, respectively, as the number of antennas included in respective ports, wherein each port include one or more antennas; creating transmit patterns so that they cyclically differ from each other every the number of RS transmission to transmit the created transmit patterns the number of RS transmission times; and mapping the RSs to one or more antennas according to the created, respective patterns, and transmitting the RSs in order.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). The present disclosure relates to channel information feedback in a wireless communication system, and an operation method of a receiving node includes: determining compressed channel information based on an eigenvalue decomposition of a covariance matrix regarding a channel, and transmitting, to a transmitting node, a direction index and a magnitude index representing the compressed channel information. Herein, a dimension of the compressed channel information is lower than a dimension of channel information associated with the transmitting node. Also, the disclosure includes other embodiments, different from the above described embodiment.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to transmission of a reference signal in a wireless communication system, and an operation method of a terminal comprises the steps of: receiving control information for reference signals from a base station, and receiving the reference signals according to the control information. Further, the present invention also comprises embodiments different from the embodiment described above.
Abstract:
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A feedback transmission method for a receiving device in a multiple input multiple output system according to one embodiment comprises: a step of measuring channel state information; a first quantization step of quantizing the channel state information using a first codebook; a second quantization step of quantizing the channel state information using second and third codebooks which are different from the first codebook; and a step of feeding back the channel state information on the basis of a selection result of one of the first and second quantization steps.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to transmission of a reference signal in a wireless communication system, and an operation method of a terminal comprises the steps of: receiving control information for reference signals from a base station; and receiving the reference signals according to the control information. Further, the present invention also comprises embodiments different from the embodiment described above.
Abstract:
The present disclosure relates to 5G or pre-5G communication systems capable of achieving much higher data rates than 4G communication systems like LTE systems. A method for a base station to provide different services may include determining overlap related information for a first terminal of a first system employing a first transmission time interval (TTI) and a second terminal of a second system employing a second TTI different from the first TTI. The method may also include transmitting scheduling information containing the overlap related information to the first terminal and the second terminal and transmitting data to the first terminal and the second terminal based on the overlap related information.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and apparatus for transmitting/receiving Channel State Information (CSI) is provided for use in a Full Dimensional Multiple Input Multiple Output (FD-MIMO) system. A channel state information (CSI) reception for a base station according to the present disclosure for use in a wireless communication system includes transmitting CSI process configuration information to a terminal, transmitting a CSI Reference Signal (CSI-RS) to the terminal based on the CSI process configuration information, and receiving the CSI generated based on CSI-RS measurement result from the terminal, wherein the CSI process configuration information is configured to measure channel states of horizontal and vertical antenna arrays, the CSI includes a joint Channel Quality Indicator (CQI), and the joint CQI is determined based on the CQIs for the horizontal and vertical antennas arrays.
Abstract:
An apparatus and method is proved that transmits and receives Reference Signals (RSs) in a wireless communication system using Multiple-Input and Multiple-Output (MIMO). A system adapted to the method is provided. The method includes: determining the number of RS transmission to two or more antennas, respectively, as the number of antennas included in respective ports, wherein each port include one or more antennas; creating transmit patterns so that they cyclically differ from each other every the number of RS transmission to transmit the created transmit patterns the number of RS transmission times; and mapping the RSs to one or more antennas according to the created, respective patterns, and transmitting the RSs in order.