Abstract:
A bio-information measuring apparatus bio-information measuring method are provided. The bio-information measuring apparatus includes: a pulse wave obtainer configured to obtain a pulse wave signal, and a processor configured to correct a feature of the obtained pulse wave signal based on a variation in an amplitude of the obtained pulse wave signal, and to measure bio-information based on the corrected feature.
Abstract:
Provided is an apparatus for estimating bio-information. The apparatus for estimating bio-information according to an embodiment includes a processor configured to obtain a pulse wave signal from a user; extract components of a plurality of element waveforms which constitute a waveform of the pulse wave signal; and obtain a cardiovascular feature based on the extracted components of the plurality of element waveforms. The processor is configured to extract a component of at least one element waveform based on a component of an adjacent element waveform.
Abstract:
A bio-signal processing apparatus, a biometric information detection apparatus, and a method of detecting biometric information are provided. The bio-signal processing apparatus includes a first low pass filter (LPF) configured to have a first cutoff frequency, and output a first preprocessed signal having low frequency components of an input bio-signal that are less than the first cutoff frequency, a second LPF configured to have a second cutoff frequency, and output a second preprocessed signal in which high frequency components greater than or equal to the second cutoff frequency are removed from the input bio-signal, and a processor configured to output an output bio-signal for biometric information detection, based on the output first preprocessed signal and the output second preprocessed signal.
Abstract:
A bio-signal processing apparatus, a biometric information detection apparatus, and a method of detecting biometric information are provided. The bio-signal processing apparatus includes a first low pass filter (LPF) configured to have a first cutoff frequency, and output a first preprocessed signal having low frequency components of an input bio-signal that are less than the first cutoff frequency, a second LPF configured to have a second cutoff frequency, and output a second preprocessed signal in which high frequency components greater than or equal to the second cutoff frequency are removed from the input bio-signal, and a processor configured to output an output bio-signal for biometric information detection, based on the output first preprocessed signal and the output second preprocessed signal.
Abstract:
A wearable device and a communication method using the wearable device may include recognizing a gesture of a user by sensing at least one of a motion and a biosignal that occur in or around a portion of the user to which the wearable device is attached. A wireless communication connection is established for the wearable device with at least one of an external device, an internal device, or another wearable device based on the recognized gesture. Wireless communication is performed with at least one of the external device and the internal device with which the wireless communication connection is established.
Abstract:
A wireless power transmission apparatus includes a resonator configured to transmit power through a resonance with another resonator, a switch configured to connect the resonator to a power source, a setting unit configured to set a target amount of current to flow in the resonator, and a control unit configured to control the switch based on the target amount of current.
Abstract:
A wireless power transmission apparatus includes a resonator configured to transmit power to another resonator, and a power supply unit configured to supply power to the resonator. The apparatus further includes a switching unit including a transistor configured to be turned on to connect the power supply unit to the resonator, and to be turned off to disconnect the power supply unit from the resonator, based on a control signal, and a diode connected in series to the transistor.
Abstract:
A wireless energy reception apparatus includes a target resonator configured to receive energy on a frame-by-frame basis from an energy transmission end through a resonance with a source resonator in a symbol duration constituting a criterion for transmitting energy from the energy transmission end to an energy reception end; a load end configured to receive power from the target resonator; a switching unit configured to connect the target resonator to the load end, and disconnect the target resonator from the load end; and a controller configured to control symbol synchronization by detecting a start point of a symbol based on a distance between the source resonator and the target resonator.
Abstract:
A method of determining regularity of a bio-signal is provided. The method of determining regularity of a bio-signal according may include acquiring a plurality of pulse waveforms of the bio-signal, acquiring a plurality of slope waveforms corresponding to the plurality of pulse waveforms, binarizing the plurality of slope waveforms, acquiring synchronization information of the plurality of pulse waveforms based on binarizing the plurality of pulse waveforms; acquiring a synchronization rate of a reference interval based on the synchronization information, and determining whether the bio-signal is regular or irregular based on the synchronization rate of the reference interval.
Abstract:
Provided is an apparatus for estimating bio-information. The apparatus for estimating bio-information according to an embodiment includes a processor configured to obtain a pulse wave signal from a user; extract components of a plurality of element waveforms which constitute a waveform of the pulse wave signal; and obtain a cardiovascular feature based on the extracted components of the plurality of element waveforms. The processor is configured to extract a component of at least one element waveform based on a component of an adjacent element waveform.