Abstract:
Accordingly the embodiments herein provide a method for provisioning Minimum System Information (MSI) for User Equipment (UE) in a wireless communication system. The method includes decoding Primary Broadcast Channel (PBCH) to acquire a first Master Information Block (MIB) periodically transmitted by base station. Further, the method includes determining to perform one of bar a cell from which the first MIB is acquired for a pre-determined period of time and acquire second MIB transmitted on Secondary Broadcast Channel (SBCH) by base station based on cell barring indication received in the first MIB. Furthermore, the method includes transmitting a request message to the base station to obtain at least one SI block of the OSI. In some embodiments, the method includes receiving a list of system configuration indexes (SCIs) and corresponding configuration of SI blocks, from the base station based on SI storage capability of the UE indicated to the base station.
Abstract:
The embodiments herein provide a method and system for creating a secure connection for a User Equipment (UE) in a wireless network including a UE, carrier aggregated with at least one first serving frequency served by a first eNB and at least one second serving frequency served by a second eNB. A unique non-repetitive security base key associated with the second eNB is generated using a freshness parameter and security key associated with the first eNB. The use of a different freshness parameter for each security base key derivation avoids key stream repetition. Further, a user plane encryption key is derived based on the generated unique non-repetitive security base key associated with the second eNB for encrypting data transfer over at least one data radio bearer.
Abstract:
A method for reducing consumption of battery power of User Equipment (UE) during inter-frequency cell detection in a Heterogeneous Network (HetNet) is provided. The method includes receiving an indication from a serving cell operating on a first frequency layer about presence of a beacon signal transmission on the first frequency layer from a non-serving cell, an actual data transmission and reception of the non-serving cell occurs on a second frequency layer, determining whether the indication satisfies at least one triggering condition to initiate signal scanning on the first frequency layer for identifying the beacon signal transmission from the non-serving cell, scanning, when the received indication satisfies the triggering condition, the first frequency layer for identifying any beacon signal, decoding the beacon signal from the non-serving cell, and receiving assistance information from the serving cell to facilitate identification of the non-serving cell transmitting the beacon signals on the first frequency layer.
Abstract:
A wireless communication unit capable of moving between communication cells is described. The wireless communication unit comprises: a receiver arranged to receive a wireless signal; and a controller operably coupled to the receiver and comprising a layer 1 filtering module and a layer 3 filtering module. The controller is arranged to implement on the received wireless signal both: layer 1 filtering by the layer 1 filtering module at a physical layer; and layer 3 filtering by the layer 3 filtering module at a radio resource control layer. The layer 3 filtering module is operably coupled to a gradient calculation module arranged to calculate a gradient change that is representative of at least one of: a rate of change of received signal strength with a serving cell; a rate of received signal strength difference between a neighbour cell and a serving cell, such that at least a portion of layer 3 filtering of the received wireless signal is based on the calculated gradient change.
Abstract:
A method and an apparatus are provided for determining a configuration for a radio frame. A transition from a period of inactivity to a period of activity is detected in a configured discontinuous reception (DRX) cycle. A category of at least one subframe of the radio frame that is likely to be encountered during the period of activity is determined, if a dynamic reconfiguration of time division duplex (TDD) uplink (UL)-downlink (DL) configurations is enabled. The category of the least one subframe includes one of a flexible subframe and a fixed subframe.
Abstract:
In an exemplary embodiment, the method performed by a User equipment (UE) in a wireless communication system is disclosed. The method comprises receiving a system information block 1 (SIB 1) which is broadcasted from a base station (BS) of a cell and identifying whether the cell is a Non-Public Network (NPN) cell based on whether information of a NPN is included in the SIB 1, wherein the NPN cell is a cell allowed to be accessed by the UE in the NPN. Also the method further comprises accessing the cell, when the cell is identified as the NPN cell.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments herein provide a method for determining whether a base station is genuine or rouge in a wireless network. If a received authentication key matches with the authentication key generated in the UE, the method includes identifying a base station as genuine base station and carrying out a normal procedure. If the received authentication key does not match with the generated authentication key, the method includes identifying the base station as a rouge base station. The authentication key can be a digital signature (DS), a Message Authentication Code-Integrity (MAC-I), and a hash of MIB/SIBs including PCI.
Abstract:
A method for executing conditional handover by a UE in a wireless communication network is provided. The method may include receiving an RRC reconfiguration message from a source cell of the wireless communication network. The RRC reconfiguration message may include a handover configuration and determining whether a CHO configuration may be provided in the handover configuration. Further, the method may include performing one of: continuing an RLM timer and an RLM procedure on the source cell, in response to determining that the CHO configuration is provided in the handover configuration; and stopping the RLM timer and suspending the radio link monitoring procedure on the source cell, in response to determining that the CHO configuration is not provided in the handover configuration. The method may then include executing the CHO from the source cell to a candidate target cell in the wireless communication network based on the CHO configuration.
Abstract:
A method for triggering a RRC state transition indication by UE in a wireless communication network includes receiving, by the UE, a radio resource control (RRC) Reconfiguration message from the wireless communication network, where the RRC Reconfiguration message comprises a configuration setting. Further, the method includes enabling, by the UE, a capability to trigger a RRC state transition indication to the wireless communication network based on the configuration setting and determining, by the UE, a condition to trigger the RRC state transition indication to the wireless communication network is satisfied. Further, the method includes triggering, by the UE, the RRC state transition indication by sending a UE assistance information message to the wireless communication network.
Abstract:
Embodiments herein provide a method and system for performing a bearer type change of a plurality of radio bearers configured for a User Equipment (UE). The proposed method includes changing the bearer type of specific bearer by the network. Further, the proposed method includes checking any changes in keys or PDCP termination point or PDCP version change. Furthermore, the proposed method includes notifying the UE to change the bearer type either through reconfiguration procedure without handover or SN change procedure or reconfiguration procedure with handover or SN change procedure. The network indicates one or more operations to the UE for performing the bearer type change.