Abstract:
A display device may include an insulating substrate, a pixel electrode formed on the insulating substrate, a circuit board connected to the insulating substrate, a first wiring connected to the circuit board, and a second wiring for transmitting a signal to the pixel electrode. The second wiring may be connected to the first wiring, and the second wiring may have a larger resistance than the first wiring. Portions of the first wiring or the second wiring may include a zigzag pattern, and a swing width of a zigzag pattern of the second wiring may be varied depending on the position of the second wiring.
Abstract:
A liquid crystal display that is subject to pixel-high defects due to manufacturing anomalies is provided with programmable repair means for each pixel electrode. In one embodiment, a transistor-array substrate is provided with plural gate lines that are separated from each other by a first interval, plural data lines that are insulated from the gate lines while crossing the gate lines, and separated from each other by a second interval larger than the first interval, thereby defining plural pixel areas. Each pixel area has a corresponding pixel unit comprising a switching device, pixel electrode, and repair electrode. The repair electrode branches from a neighboring gate line and extends such that the repair electrode is in overlapping spaced-apart relation with the pixel electrode and selectively connectable to the pixel electrode. Accordingly, a pixel where a high pixel defect occurs can be repaired by selective connection with the repair electrode, thereby improving display quality of the liquid crystal display.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode on the first portion of the lower conductive film; removing the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.
Abstract:
A device and corresponding method of fabrication thereof are disclosed, where the device provides a contact for semiconductor and display devices, the device including a substrate, a first wiring line assembly formed on the substrate, an under-layer formed on the first wiring line assembly, an organic insulating layer formed on the under-layer such that the organic insulating layer covers the under-layer, a pattern on the organic insulating layer for contact holes to expose the under-layer, etched contact holes formed in the under-layer in correspondence with the pattern such that the underlying first wiring line assembly is exposed to the outside, a cured organic insulating layer formed on the under-layer, and a second wiring line assembly formed on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the etched contact holes, and the corresponding method of fabrication including forming a first wiring line assembly on a substrate, forming an under-layer on the first wiring line assembly, forming an organic insulating layer such that the organic insulating layer covers the under-layer patterning the organic insulating layer to thereby form contact holes exposing the under-layer, etching the under-layer exposed through the contact holes such that the underlying first wiring line assembly is exposed to the outside, curing the organic insulating layer, and forming a second wiring line assembly on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the contact holes.
Abstract:
A liquid crystal display that is subject to pixel-high defects due to manufacturing anomalies is provided with programmable repair means for each pixel electrode. In one embodiment, a transistor-array substrate is provided with plural gate lines that are separated from each other by a first interval, plural data lines that are insulated from the gate lines while crossing the gate lines, and separated from each other by a second interval larger than the first interval, thereby defining plural pixel areas. Each pixel area has a corresponding pixel unit comprising a switching device, pixel electrode, and repair electrode. The repair electrode branches from a neighboring gate line and extends such that the repair electrode is in overlapping spaced-apart relation with the pixel electrode and selectively connectable to the pixel electrode. Accordingly, a pixel where a high pixel defect occurs can be repaired by selective connection with the repair electrode, thereby improving display quality of the liquid crystal display.
Abstract:
The present invention relates to a display device and a manufacturing method thereof. A display device according to an exemplary embodiment of the present invention includes a substrate including a first surface and a second surface, a first line disposed on the first surface and made of a transparent metal oxide semiconductor, and a first semiconductor disposed on the first surface and made of the transparent metal oxide semiconductor.
Abstract:
The present description relates to an olefin block copolymer having excellences in elasticity and heat resistance and its preparation method. The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an α-olefin repeating unit at different weight fractions. The olefin block copolymer has a density of 0.85 to 0.92 g/cm3, and density X (g/cm3) and TMA (Thermal Mechanical Analysis) value Y (° C.) satisfy a defined relationship.
Abstract translation:本发明涉及具有优异的弹性和耐热性的烯烃嵌段共聚物及其制备方法。 烯烃嵌段共聚物包括多个嵌段或链段,每个嵌段或链段包括不同重量分数的乙烯或丙烯重复单元和α-烯烃重复单元。 烯烃嵌段共聚物的密度为0.85〜0.92g / cm 3,密度X(g / cm 3)和TMA(热机械分析)值Y(℃)满足规定的关系。
Abstract:
The present description relates to an olefin block copolymer having excellences in elasticity, heat resistance, and processability. The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an α-olefin repeating unit at different weight fractions. In the olefin block copolymer, a first derivative of the number Y of short-chain branches (SCBs) per 1,000 carbon atoms of each polymer chain contained in the block copolymer with respect to the molecular weight X of the polymer chains is a negative or positive number of −1.5×10−4 or greater; and the first derivative is from −1.0×10−4 to 1.0×10−4 in the region corresponding to the median of the molecular weight X or above.
Abstract:
In a display panel and a display apparatus having the display panel, the display panel includes array and opposite substrates. The array substrate includes display and peripheral areas. Gate and source lines are formed in the display area. A gate driving part and first and second clock lines are formed in the peripheral area. The gate driving part outputs gate signals to the gate line. The first and second clock lines respectively transmit first and second clock signals to the gate driving part. The opposite substrate is combined with the array substrate and includes a common electrode layer. The common electrode layer has an opening portion patterned to expose the first and second clock lines. The exposed portions of the first and second clock lines have substantially the same area. Thus, delays of the gate signals may be minimized and distortion of the gate signals may be prevented.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode on the first portion of the lower conductive film; removing the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.