Abstract:
The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.
Abstract:
A matted particulate electrode located between the current collector and a porous separator of a rechargeable lithium battery is described, which contains electro-active particles intermixed with pliable, solid, lithium ion conducting, polymer electrolyte filaments having adhesive surfaces. The electro-active particles and the optionally added electro-conductive carbon particles adhere to the tacky surface of the adhesively interlinking polymer electrolyte filaments. The matted particulate electrode is impregnated with an organic solution containing another lithium compound. In a second embodiment the porous separator is coated on at least one of its faces, with polymer electrolyte having an adhesive surface and made of the same polymer as the electrolyte filaments. The polymer electrolyte filaments in the matted layer may adhere to the coated surface of the separator. In addition the polymer coating is partially filling the pores of the porous electrolyte, but leaving sufficient space in the pores for the organic solution to penetrate the separator of the lithium battery.
Abstract:
A silicon nitride based composition for manufacturing sintered ceramic articles, in particular cutting tool inserts, having improved density, hardness and fracture toughness characteristics is described. The amounts of yttrium oxide, aluminum nitride and titanium nitride contained in the silicon nitride based mixture are interrelated by a formula to attain substantially improved abrasion resistance.
Abstract:
An electrical energy storage device for storing electrical energy and supplying the electrical energy to a driving motor at different power levels is disclosed. The electrical storage device has an energy battery connected to a power battery. The energy battery has a higher energy density than the power battery. However, the power battery can provide electrical power to the electrical motor at different power rates, thereby ensuring that the motor has sufficient power and current when needed. The power battery is continuously recharged by the energy storage battery. In this way, the power battery temporarily stores electrical energy received from the energy battery and provides the electrical energy at the different power rates as required by the motor. The energy storage device can be releasably connected to an external power source in order to recharge both batteries. Both batteries can be recharged independently to optimize the recharging and lifetime characteristics of the batteries.
Abstract:
The preparation of amorphous lithium-manganese oxide compound is described having lithium to manganese ratio between 0.4 and 1.5 and particle size less than 5 .mu.m. The amorphous lithium-manganese oxide compound is to be utilized in a non-aqueous rechargeable lithium battery.
Abstract:
The terminals of a thin plate rechargeable lithium battery are coated with a heat-sealable polymer. The coating forms a band on each face of the terminals and the band is heat-sealed to the inner insulator layers of a multi-layered polymer laminate enclosing the thin plate rechargeable lithium battery at a location close to an open edge of the insulator layer. Small sheets of rigid, high melting point, polymeric materials are inserted between the bands of coating carried by the terminals and the edge of the multi-layered laminate enclosing the lithium battery. A portion of the sheets of polymeric material is adhesively attached to the face of the terminal adjacent the bands of coating. The open edges of the multi-layered polymer laminate enclosure are subsequently sealed to enclose completely the thin plate lithium battery.
Abstract:
Solid solution of titanium dioxide and tin dioxide is utilized as the anode active substance in the negative electrode of a rechargeable lithium battery. The lithium battery comprised of a negative electrode containing particles of titanium dioxide-tin dioxide solid solution, a non-aqueous lithium ion bearing electrolyte and a positive electrode, usually made of a lithium containing chalcogenide compound provides stable voltage, has high reversible anode capacity and high energy density.
Abstract:
An improved rechargeable lithium battery is described comprising a transition metal compound as cathode active material and carbonaceous particles as anode active material, having prior intercalated lithium ions in the carbonaceous particles in the anode of the assembled lithium battery, thereby reducing the weight of the cathode active material required. The rechargeable lithium battery has increased energy density per unit weight and per unit volume.
Abstract:
The composite positive electrode comprises a metallic current collector sheet the surface of which bears a double layer of a mixed oxide interface containing an oxide of the metal of the current collector and a transition metal oxide, and a layer of the same transition metal oxide over the mixed oxide interface. The double layer is in contact with a positive electrode containing an oxide of the same transition metal as the cathode active ingredient. The composite positive electrode is designed to be incorporated in a rechargeable lithium battery.
Abstract:
An improved lithium ion battery is described wherein corrosion of the current collector in contact with the electrode face is greatly reduced. In one embodiment an electrically conductive, ceramic layer is inserted between the current collector and the corresponding major face of the cathode. In another embodiment the metallic current collector plate is replaced by an electrically conductive laminated organic polymer having electrically conductive particles dispersed therein.