摘要:
The power consumption of a data sampling unit that selects a phase of a clock signal appropriate for sampling payload data is reduced at an input interface. A semiconductor integrated circuit includes an input interface and internal core circuits. The input interface includes a hysteresis circuit and a data sampling unit. The hysteresis circuit detects an input signal between first and second input thresholds as a sleep command. The data sampling unit selects an appropriate phase of a sampling clock signal in accordance with a synchronizing signal and samples payload data. When a sleep command is detected, a sleep signal is also supplied to the internal core circuits and the data sampling unit and they are controlled into a low-power consumption state.
摘要:
When generating an RF test signal for mismatch calibration for receiver in order to calibrate reception mismatch of an I-phase signal and a Q-phase signal that are output from demodulated signal processing circuits coupled to mixers for receiving, a Tx VCO avoids covering the higher frequency of an RF received signal in an FDD system. An RF test signal generating unit generates, in a calibration mode of a mismatch calibration for receiver circuit, the RF test signal by using an oscillation output signal of the Tx VCO and other circuits, and supplies the same to the mixers for receiving via a switch. The RF test signal has a frequency within an RF reception frequency band that is higher than that of an RF transmission signal with the maximum frequency band of multiband radio frequency communications. By switching the switch in a reception mode, an output of a low-noise amplifier that amplifies the RF received signal received by an antenna is supplied to each of the mixers for receiving.
摘要:
When generating an RF test signal for mismatch calibration for receiver in order to calibrate reception mismatch of an I-phase signal and a Q-phase signal that are output from demodulated signal processing circuits coupled to mixers for receiving, a Tx VCO avoids covering the higher frequency of an RF received signal in an FDD system. An RF test signal generating unit generates, in a calibration mode of a mismatch calibration for receiver circuit, the RF test signal by using an oscillation output signal of the Tx VCO and other circuits, and supplies the same to the mixers for receiving via a switch. The RF test signal has a frequency within an RF reception frequency band that is higher than that of an RF transmission signal with the maximum frequency band of multiband radio frequency communications. By switching the switch in a reception mode, an output of a low-noise amplifier that amplifies the RF received signal received by an antenna is supplied to each of the mixers for receiving.
摘要:
The semiconductor integrated communication circuit includes:a low-noise amplifier; a receive mixer; a receive VCO; a demodulation-processing circuit; a modulation-processing circuit; a transmit mixer; a transmit VCO; a second-order-distortion-characteristic-calibration circuit; a quadrature-receive-signal-calibration circuit; and a test-signal generator. The test-signal generator generates first and second test signals using the transmit VCO. In the second-order-distortion-characteristic-calibration mode, the second-order-distortion-characteristic-calibration circuit variably changes an operation parameter of the receive mixer thereby to calibrate the second-order distortion characteristic to achieve its best condition while the first test signal is supplied to the receive mixer. In the quadrature-receive-signal-calibration mode, the quadrature-receive-signal-calibration circuit calibrates IQ mismatch of a quadrature receive signal to achieve the best condition thereof while the second test signal is supplied to the receive mixer. The integrated communication circuit can minimize the increase in chip footprint of a test-signal-generating circuit used to perform calibrations of both the second-order characteristic and IQ mismatch.
摘要:
The transmitter synthesizes amplitude and phase components and calibrates a delay mismatch between amplitude and phase components with high accuracy at high speed. The transmitter has: a digital-to-analog converter (DAC) and a low-pass filter (LPF) in its amplitude-signal path; and a phase modulator operable to convert up a phase component into an RF component in its phase-signal path. In an operation of delay calibration, a test input signal is supplied to a delay-calibrating unit in the amplitude-signal path, and the delay-calibrating unit provides a test input signal to DAC. Then, LPF generates a test output signal. The delay-calibrating unit detects a delay of the test output signal relative to the test input signal, calibrates an amplitude signal delay in a range from the input of the delay-calibrating unit to the output of LPF, reduces the difference between amplitude and phase signal delays of the phase modulator in the phase-signal path.
摘要:
The semiconductor integrated communication circuit includes:a low-noise amplifier; a receive mixer; a receive VCO; a demodulation-processing circuit; a modulation-processing circuit; a transmit mixer; a transmit VCO; a second-order-distortion-characteristic-calibration circuit; a quadrature-receive-signal-calibration circuit; and a test-signal generator. The test-signal generator generates first and second test signals using the transmit VCO. In the second-order-distortion-characteristic-calibration mode, the second-order-distortion-characteristic-calibration circuit variably changes an operation parameter of the receive mixer thereby to calibrate the second-order distortion characteristic to achieve its best condition while the first test signal is supplied to the receive mixer. In the quadrature-receive-signal-calibration mode, the quadrature-receive-signal-calibration circuit calibrates IQ mismatch of a quadrature receive signal to achieve the best condition thereof while the second test signal is supplied to the receive mixer. The integrated communication circuit can minimize the increase in chip footprint of a test-signal-generating circuit used to perform calibrations of both the second-order characteristic and IQ mismatch.
摘要:
This invention provides a receiver in which the calibration time by repeated operations to correct phase mismatch and amplitude mismatch between I and Q signals can be reduced. The receiver comprises mixers which convert received RF signals into quadrature modulated IF signals, signal paths which filter and amplify and output the quadrature modulated signals output from the mixers, a calibration circuit which calibrates phase and amplitude mismatches between the I and Q components of the quadrature modulated signals output through the signal paths, a frequency converter which, when the mixers or the signal paths selected output calibration signals with IF frequency instead of the quadrature modulated signals, converts the calibration signals into those with a frequency higher than IF frequency, and an arithmetic operation circuit which calculates phase and amplitude mismatches from the calibration signals output by the frequency converter and outputs calculation results. The calibration circuit executes calibration, using the calculation results.
摘要:
A multi-band radio module for selectively supplying received signals in a plurality of frequency bands to a low noise amplifier via an input impedance matching circuit by switching over the operation mode of the low noise amplifier is comprised of: a pre-stage amplification unit including a plurality of fundamental amplifiers connected to one another in parallel, the fundamental amplifiers sharing a load impedance connected to a source voltage and a grounded degeneration impedance and having input signal lines commonly connected to an input impedance matching circuit; a post-stage amplifier to which the output signals of the plurality of fundamental amplifiers are commonly inputted; and a bias control unit for selectively turning on the fundamental amplifiers, wherein the input impedance of the low noise amplifier is selectively optimized for the matching circuit depending on the RF band to be received.
摘要:
This invention provides a receiver in which the calibration time by repeated operations to correct phase mismatch and amplitude mismatch between I and Q signals can be reduced. The receiver comprises mixers which convert received RF signals into quadrature modulated IF signals, signal paths which filter and amplify and output the quadrature modulated signals output from the mixers, a calibration circuit which calibrates phase and amplitude mismatches between the I and Q components of the quadrature modulated signals output through the signal paths, a frequency converter which, when the mixers or the signal paths selected output calibration signals with IF frequency instead of the quadrature modulated signals, converts the calibration signals into those with a frequency higher than IF frequency, and an arithmetic operation circuit which calculates phase and amplitude mismatches from the calibration signals output by the frequency converter and outputs calculation results. The calibration circuit executes calibration, using the calculation results.
摘要:
The receiver, which enables rejection of image signals with higher accuracy over wider frequency band, can be provided as a low IF receiver by inputting a calibration signal of frequency fi (1≦i≦N) before reception of signals and determining the frequency response fa(z) to fd(z) of a calibrating filter in a filter mismatch calibrating circuit (FIL_CAL) 195 to make zero amplitude and phase mismatches between the I component and Q component of the quadrature demodulation signal at the frequency fIFi.