Abstract:
Methods of forming a near field transducer (NFT), the method including depositing a plasmonic material; and laser annealing the plasmonic material.
Abstract:
A device including a near field transducer (NFT); a write pole; at least one dielectric material positioned between the NFT and the write pole; and an adhesion layer positioned between the NFT and the at least one dielectric material.
Abstract:
Methods of forming a layer of magnetic material on a substrate, the method including: configuring a substrate in a chamber; controlling the temperature of the substrate at a substrate temperature, the substrate temperature being at or below about 250° C.; and introducing one or more precursors into the chamber, the one or more precursors including: cobalt (Co), nickel (Ni), iron (Fe), or combinations thereof, wherein the precursors chemically decompose at the substrate temperature, and wherein a layer of magnetic material is formed on the substrate, the magnetic material including at least a portion of the one or more precursors, and the magnetic material having a magnetic flux density of at least about 1 Tesla (T).
Abstract:
Described are electrodeposition methods, and materials and structures prepared by electrodeposition methods, and devices prepared from the electrodeposited materials.
Abstract:
A method includes immersing a wafer in an electrolyte including a plurality of compounds having elements of a thermally stable soft magnetic material. The method also includes applying a combined stepped and pulsed current to the wafer when the wafer is immersed in an electrolyte. The wafer is removed from the electrolyte when a layer of the thermally stable soft magnetic material is formed on the wafer.
Abstract:
Devices that include a near field transducer (NFT), the NFT having at least one external surface; and at least one adhesion layer positioned on at least a portion of the at least one external surface, the adhesion layer including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof.
Abstract:
A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
Abstract:
A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
Abstract:
A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a carbon interlayer positioned between the NFT and the at least one cladding layer.