Abstract:
A timepiece includes a determination unit configured to execute determination processing of determining whether a braking force that brakes a rotor is preferably large or small, the rotor being rotated in a normal rotation direction to rotate a pointer clockwise; and a detection control unit configured to cause execution of rotation detection processing of detecting rotation of the rotor based on a first induced voltage output to a predetermined terminal among the first terminal and the second terminal being connected to a coil configured to generate a magnetic flux to rotate the rotor in the normal rotation direction, the predetermined terminal being selected based on the determination by the determination unit.
Abstract:
A timepiece includes a voltage detection unit that detects a voltage applied to a stepping motor for driving an indicating hand, and that outputs a voltage detection result, and a drive control unit that controls a rotor to perform reverse rotation by using a reverse rotation pulse including a first pulse whose polarity is the same as that of a normal rotation pulse for causing the rotor of the stepping motor to perform normal rotation, a second pulse whose polarity is reverse to that of the first pulse, and a third pulse whose polarity is reverse to that of the second pulse, and to control the rotor to perform the reverse rotation by using the third pulse having a pulse width set in accordance with the voltage detection result.
Abstract:
There is provided a stepping motor including a stator that is integrally molded by using a Fe—Ni alloy plate through machining, that has a rotor accommodating through-hole, and in which a magnetic path is disposed around the rotor accommodating through-hole, a rotor that is rotatably arranged inside the rotor accommodating through-hole, and a coil that is disposed in the stator. A Cr-diffusion region having a molten-solidified portion of Cr is formed in a portion of the magnetic path.
Abstract:
There is provided an analog timepiece including an hour hand, a minute hand, and a second hand which are rotated by a unit step operation of a stepping motor. The analog timepiece includes a rotor that rotates the hour hand, the minute hand, and the second hand, and that has a magnetic polarity, a stator that includes magnetic pole portions disposed around the rotor, coils that excite the magnetic pole portions, and a control unit that controls each unit step of the rotor in accordance with each pulse group by applying a pulse group including a rotary pulse for rotating the rotor and a braking pulse for braking rotation of the rotor, which is applied before the rotary pulse is applied, to the coil.
Abstract:
A stepping motor includes a one-piece stator integrally molded by using a Fe—Ni alloy plate through machining, a rotor accommodating through-hole, and in which a magnetic path is disposed around the rotor accommodating through-hole. A rotor is rotatably arranged inside the rotor accommodating through-hole. A magnetic core is connected to the stator, and a coil is wound on the magnetic core. A Cr-diffusion region having a molten-solidified portion of Cr is diffused in the Fe—Ni alloy stator in a portion of the magnetic path.
Abstract:
An electronic timepiece includes a solar power source, a voltage stabilizer circuit that generates a constant voltage by using power supplied from the solar power source, and a control circuit that clocks the time by driving a rotating body at first hand operation speed and at second hand operation speed which is faster than the first hand operation speed. The control circuit selects a voltage of the solar power source so as to drive the rotating body in a case of the first hand operation speed, and selects at least any one voltage of the constant voltage and the voltage of the solar power source so as to drive the rotating body in a case of the second hand operation speed.
Abstract:
A rotation detection unit configured to detect the condition of rotation of a stepping motor on the basis of an induced signal generated in a drive coil of the stepping motor in a detection period in which the condition of rotation of the stepping motor is detected and a control unit configured to rotationally drive the stepping motor by supplying a drive signal to the drive coil of the stepping motor within the driving period in which the stepping motor is rotationally driven are provided. The driving period and part of the detection period are configured to overlap with each other in a first time interval, and the control unit stops supply of the drive signal to the drive coil of the stepping motor in the first time interval.