摘要:
A method and apparatus for optimizing biological and cytological specimen screening and diagnosis. A slide review process is recommended for cytological specimen screening to identify abnormal sub-populations for further review and also diagnosis by a human expert. An automated screener processes a cytological specimen. Using a slide score generated by the automated screener, a slide review process using a slide score classification is determined. The recommendation of slide review processes improves overall performance of the screening process as measured by sensitivity to abnormal specimens, and at the same time reduces the work load of a human reviewer. The system also effectively and smoothly integrates the process of initial screening of the specimen with the process of further review of the specimen and final diagnosis of the specimen.
摘要:
Image enhancement for a digital image, such as an image of a biological specimen mounted on a microscope slide or a cytological specimen is herein described. A digital representation of the image is dilated to produce a dilated image and eroded to provide an eroded image. The dilated image, eroded image and the digital representation of the image are then processed to produce an enhanced image.
摘要:
A thick group of cells classifier. Image data acquired from an automated microscope from a cytological specimen is processed by a computer system. The computer applies filters at different stages. Obvious artifacts are eliminated from analysis early in the processing. The first stage of processing is image segmentation where objects of interest are identified. The next stage of processing is feature calculation where properties of each segmented thick group object are calculated. The final step is object classification where every segmented thick group object is classified as being abnormal or as belonging to a cellular or non-cellular artifact.
摘要:
Coverslip detection locating all four coverslip edges. A field of view processor receives image data from a charge coupled device camera. The charge coupled device camera images a slide and coverslip that is mounted on a movable frame. The slide and coverslip are illuminated from below with a uniform light source. The moveable frame is under computer control and moves in response to the field of view processor. The field of view processor locates the coverslip by first positioning the movable frame to view a portion of the slide on a predetermined potion of the slide within a predetermined area of the slide. The slide is then re-imaged after the movable frame moves the slide toward a chosen edge of direction. Edge type objects are located and followed over multiple fields of view. If the edge object satisfies a set of predetermined criteria the coverslip edge has been found. The edge is extended to find all four corners of the coverslip. The edge objects are processed using morphological operators.
摘要:
Coverslip detection locating all four coverslip edges. A field of view processor receives image data from a charge coupled device camera. The charge coupled device camera images a slide and coverslip that is mounted on a movable frame. The slide and coverslip are illuminated from below with a uniform light source. The moveable frame is under computer control and moves in response to the field of view processor. The field of view processor locates the coverslip by first positioning the movable frame to view a portion of the slide on a predetermined potion of the slide within a predetermined area of the slide. The slide is then re-imaged after the movable frame moves the slide toward a chosen edge of direction. Edge type objects are located and followed over multiple fields of view. If the edge object satisfies a set of predetermined criteria the coverslip edge has been found. The edge is extended to find all four corners of the coverslip. The edge objects are processed using morphological operators.
摘要:
Field of views of a slide are examined to assess the likelihood of existence of detectable single cells, groups, and thick groups of cells to locate objects of interest by an automated microscope. The FOV features consists of features selected from the distribution profiles of size, shape, layout arrangement, texture and density of all objects within a FOV which are compared against pre-determined criteria. Each field of view is assigned a likelihood value based on FOV features. Areas that are blank, or contain air bubbles, or are too dense for analysis are identified and excluded for further analysis. Each FOV is ranked according to its likelihood of containing SIL (Squamous Intraepithelial Lesion) cells or cell groups of interest. These results, such as SIL, single cell ranking, group ranking are used to arrange the further examination of FOVs in a priority order.
摘要:
An incremental concurrent learning method starts with providing potential defects and fabrication information and a primary classification rule and secondary classification rule selection from a knowledge defect database from multiple products with different process cycles. The method then performs a truth inquiry to update a classification rule database for use by the primary classification rule and secondary classification rule selection. The method performs a primary defect classification and checks the confidence of the classification, and performs a secondary defect classification if the confidence is not high. If the confidence of the secondary defect classification is not high, a new defect may have been discovered and a novelty defect detection step is performed to define artifacts or potential new defect types to provide information for the truth inquiry.
摘要:
An intelligent spatial reasoning method receives a plurality of object sets. A spatial mapping feature learning method uses the plurality of object sets to create at least one salient spatial mapping feature output. It performs spatial reasoning rule learning using the at least one spatial mapping feature to create at least one spatial reasoning rule output. The spatial mapping feature learning method performs a spatial mapping feature set generation step followed by a feature learning step. The spatial mapping feature set is generated by repeated application of spatial correlation between two object sets. The feature learning method consists of a feature selection step and a feature transformation step and the spatial reasoning rule learning method uses the supervised learning method.The spatial reasoning approach of this invention automatically characterizes spatial relations of multiple sets of objects by comprehensive collections of spatial mapping features. Some of the features have clearly understandable physical, structural, or geometrical meanings. Others are statistical characterizations, which may not have clear physical, structural or geometrical meanings when considered individually. A combination of these features, however, could characterize subtle physical, structural or geometrical conditions under practical situations. One key advantage of this invention is the ability to characterize subtle differences numerically using a comprehensive feature set.
摘要:
A structure-guided transformation transforms a region of an image into a region in the structure-transformed image according to the desired structure. The invention achieves efficient and accurate structure-guided processing such as filtering, detection and comparison in the transformed domain and thereby facilitates use of simple operations to enhance or detect straight lines or edges. Structure information is used to enhance and detect image features of interest even when the shape of the image structure is not regular. Both global and local structures of objects can be inspected. Global structure inspection detects gross errors in image structure; therefore side effects caused by mismatched structure-guided processing are avoided. Subtle defects along the edge of a structure can be detected by local structure inspection. Structure information guidance provides an edge detection inspection system that tolerates significant noise and contrast variations.
摘要:
Mark detection and position determination are improved by use of directional elongated filters, symmetry, gray scale image processing, structural constraints, and learning. Directional elongated filters are used to pre-process images of registration marks to create masks and enhanced images. Working sequentially, portions of the mark are detected and classified. The input gray scale image of the mark is processed using its structural constraints in conjunction with a mask for the detected mark. A cost function estimation determines mark position and orientation with sub-pixel accuracy. Learning is used to improve specific application performance.