Method and apparatus for optimizing biological and cytological specimen screening and diagnosis
    11.
    发明授权
    Method and apparatus for optimizing biological and cytological specimen screening and diagnosis 失效
    用于优化生物学和细胞学标本筛选和诊断的方法和装置

    公开(公告)号:US06181811B2

    公开(公告)日:2001-01-30

    申请号:US09006457

    申请日:1998-01-13

    IPC分类号: G06K900

    CPC分类号: G06K9/00127

    摘要: A method and apparatus for optimizing biological and cytological specimen screening and diagnosis. A slide review process is recommended for cytological specimen screening to identify abnormal sub-populations for further review and also diagnosis by a human expert. An automated screener processes a cytological specimen. Using a slide score generated by the automated screener, a slide review process using a slide score classification is determined. The recommendation of slide review processes improves overall performance of the screening process as measured by sensitivity to abnormal specimens, and at the same time reduces the work load of a human reviewer. The system also effectively and smoothly integrates the process of initial screening of the specimen with the process of further review of the specimen and final diagnosis of the specimen.

    摘要翻译: 用于优化生物学和细胞学标本筛选和诊断的方法和装置。 推荐用于细胞学标本筛选的幻灯片审查过程,以识别异常亚群以供进一步审查,并由人类专家进行诊断。 自动筛选器处理细胞学标本。 使用由自动筛选器生成的幻灯片得分,确定使用幻灯片分数分类的幻灯片审阅过程。 幻灯片审查过程的推荐通过对异常标本的敏感度测量,提高了筛选过程的整体性能,同时降低了人类审阅者的工作量。 该系统还将样品初始筛选过程与样品进一步检查和样品的最终诊断过程进行了有效平滑的整合。

    Apparatus for automated identification of thick cell groupings on a
biological specimen
    13.
    发明授权
    Apparatus for automated identification of thick cell groupings on a biological specimen 失效
    用于在生物样本上自动识别厚细胞分组的装置

    公开(公告)号:US5987158A

    公开(公告)日:1999-11-16

    申请号:US969970

    申请日:1997-11-13

    IPC分类号: G06K9/00 G06K9/68 G06T7/00

    摘要: A thick group of cells classifier. Image data acquired from an automated microscope from a cytological specimen is processed by a computer system. The computer applies filters at different stages. Obvious artifacts are eliminated from analysis early in the processing. The first stage of processing is image segmentation where objects of interest are identified. The next stage of processing is feature calculation where properties of each segmented thick group object are calculated. The final step is object classification where every segmented thick group object is classified as being abnormal or as belonging to a cellular or non-cellular artifact.

    摘要翻译: 一组细胞分类器。 从细胞学标本的自动显微镜获取的图像数据由计算机系统处理。 计算机在不同阶段应用过滤器。 在处理初期,从分析中消除了明显的文物。 第一阶段的处理是识别感兴趣对象的图像分割。 处理的下一个阶段是计算每个分段厚组对象的属性的特征计算。 最后一步是对象分类,其中每个分段的粗组对象被分类为异常或属于细胞或非细胞假象。

    Method and apparatus for detecting a microscope slide coverslip
    14.
    发明授权
    Method and apparatus for detecting a microscope slide coverslip 失效
    用于检测显微镜幻灯片盖玻片的方法和装置

    公开(公告)号:US5638459A

    公开(公告)日:1997-06-10

    申请号:US309248

    申请日:1994-09-20

    CPC分类号: G06K9/3216 G06K9/00127

    摘要: Coverslip detection locating all four coverslip edges. A field of view processor receives image data from a charge coupled device camera. The charge coupled device camera images a slide and coverslip that is mounted on a movable frame. The slide and coverslip are illuminated from below with a uniform light source. The moveable frame is under computer control and moves in response to the field of view processor. The field of view processor locates the coverslip by first positioning the movable frame to view a portion of the slide on a predetermined potion of the slide within a predetermined area of the slide. The slide is then re-imaged after the movable frame moves the slide toward a chosen edge of direction. Edge type objects are located and followed over multiple fields of view. If the edge object satisfies a set of predetermined criteria the coverslip edge has been found. The edge is extended to find all four corners of the coverslip. The edge objects are processed using morphological operators.

    摘要翻译: 盖玻片检测定位四个盖玻片边缘。 视场处理器从电荷耦合器件相机接收图像数据。 电荷耦合器件相机对安装在可移动框架上的滑盖和盖玻片进行成像。 滑盖和盖玻片从下面用均匀的光源照射。 可移动框架在计算机控制下,并响应于视野处理器移动。 视野处理器通过首先定位可移动框架来定位盖玻片,以在幻灯片的预定区域内的幻灯片的预定部分上观看幻灯片的一部分。 然后,在可移动框架将滑块朝向选定的方向边缘移动之后,重新成像幻灯片。 边缘类型对象位于并遵循多个视野。 如果边缘对象满足一组预定标准,则已经找到盖玻片边缘。 边缘扩展到盖玻片的所有四个角落。 边缘物体使用形态运算符进行处理。

    Method and apparatus for detecting a microscope slide coverslip
    15.
    发明授权
    Method and apparatus for detecting a microscope slide coverslip 失效
    用于检测显微镜幻灯片盖玻片的方法和装置

    公开(公告)号:US5812692A

    公开(公告)日:1998-09-22

    申请号:US784316

    申请日:1997-01-16

    CPC分类号: G06K9/3216 G06K9/00127

    摘要: Coverslip detection locating all four coverslip edges. A field of view processor receives image data from a charge coupled device camera. The charge coupled device camera images a slide and coverslip that is mounted on a movable frame. The slide and coverslip are illuminated from below with a uniform light source. The moveable frame is under computer control and moves in response to the field of view processor. The field of view processor locates the coverslip by first positioning the movable frame to view a portion of the slide on a predetermined potion of the slide within a predetermined area of the slide. The slide is then re-imaged after the movable frame moves the slide toward a chosen edge of direction. Edge type objects are located and followed over multiple fields of view. If the edge object satisfies a set of predetermined criteria the coverslip edge has been found. The edge is extended to find all four corners of the coverslip. The edge objects are processed using morphological operators.

    摘要翻译: 盖玻片检测定位四个盖玻片边缘。 视场处理器从电荷耦合器件相机接收图像数据。 电荷耦合器件相机对安装在可移动框架上的滑盖和盖玻片进行成像。 滑盖和盖玻片从下面用均匀的光源照射。 可移动框架在计算机控制下,并响应于视野处理器移动。 视野处理器通过首先定位可移动框架来定位盖玻片,以在幻灯片的预定区域内的幻灯片的预定部分上观看幻灯片的一部分。 然后,在可移动框架将滑块朝向选定的方向边缘移动之后,重新成像幻灯片。 边缘类型对象位于并遵循多个视野。 如果边缘对象满足一组预定标准,则已经找到盖玻片边缘。 边缘扩展到盖玻片的所有四个角落。 边缘物体使用形态运算符进行处理。

    Field prioritization apparatus and method
    16.
    发明授权
    Field prioritization apparatus and method 失效
    现场优先设备及方法

    公开(公告)号:US5757954A

    公开(公告)日:1998-05-26

    申请号:US309118

    申请日:1994-09-20

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00127

    摘要: Field of views of a slide are examined to assess the likelihood of existence of detectable single cells, groups, and thick groups of cells to locate objects of interest by an automated microscope. The FOV features consists of features selected from the distribution profiles of size, shape, layout arrangement, texture and density of all objects within a FOV which are compared against pre-determined criteria. Each field of view is assigned a likelihood value based on FOV features. Areas that are blank, or contain air bubbles, or are too dense for analysis are identified and excluded for further analysis. Each FOV is ranked according to its likelihood of containing SIL (Squamous Intraepithelial Lesion) cells or cell groups of interest. These results, such as SIL, single cell ranking, group ranking are used to arrange the further examination of FOVs in a priority order.

    摘要翻译: 检查幻灯片的视野以评估存在可检测的单细胞,组和厚组细胞的可能性,以通过自动显微镜来定位感兴趣的对象。 FOV特征包括从与预定标准进行比较的FOV内的所有对象的尺寸,形状,布局布置,纹理和密度的分布轮廓中选择的特征。 根据FOV特征为每个视野分配似然值。 识别和排除空白或含有气泡或太密集分析的区域进行进一步分析。 每个FOV根据其含有SIL(鳞状上皮内损伤)细胞或感兴趣的细胞群的可能性进行排序。 这些结果,如SIL,单细胞排名,群体排名用于以优先顺序安排FOV的进一步检查。

    Method and apparatus for incremental concurrent learning in automatic
semiconductor wafer and liquid crystal display defect classification
    17.
    发明授权
    Method and apparatus for incremental concurrent learning in automatic semiconductor wafer and liquid crystal display defect classification 失效
    自动半导体晶片和液晶显示缺陷分类中增量并行学习的方法和装置

    公开(公告)号:US6148099A

    公开(公告)日:2000-11-14

    申请号:US888119

    申请日:1997-07-03

    摘要: An incremental concurrent learning method starts with providing potential defects and fabrication information and a primary classification rule and secondary classification rule selection from a knowledge defect database from multiple products with different process cycles. The method then performs a truth inquiry to update a classification rule database for use by the primary classification rule and secondary classification rule selection. The method performs a primary defect classification and checks the confidence of the classification, and performs a secondary defect classification if the confidence is not high. If the confidence of the secondary defect classification is not high, a new defect may have been discovered and a novelty defect detection step is performed to define artifacts or potential new defect types to provide information for the truth inquiry.

    摘要翻译: 增量并发学习方法首先从具有不同工艺循环的多个产品的知识缺陷数据库提供潜在的缺陷和制造信息以及主分类规则和次级分类规则​​选择。 该方法然后执行真相查询以更新分类规则数据库以供主分类规则和次级分类规则​​选择使用。 该方法执行主缺陷分类并检查分类的置信度,并且如果置信度不高,则执行次级缺陷分类。 如果二次缺陷分类的置信度不高,则可能发现了新的缺陷,并且执行新颖性缺陷检测步骤来定义伪像或潜在的新缺陷类型以提供真相查询的信息。

    Intelligent spatial reasoning
    18.
    发明授权
    Intelligent spatial reasoning 有权
    智能空间推理

    公开(公告)号:US07263509B2

    公开(公告)日:2007-08-28

    申请号:US10411437

    申请日:2003-04-09

    IPC分类号: G06F12/00 G06N5/02

    摘要: An intelligent spatial reasoning method receives a plurality of object sets. A spatial mapping feature learning method uses the plurality of object sets to create at least one salient spatial mapping feature output. It performs spatial reasoning rule learning using the at least one spatial mapping feature to create at least one spatial reasoning rule output. The spatial mapping feature learning method performs a spatial mapping feature set generation step followed by a feature learning step. The spatial mapping feature set is generated by repeated application of spatial correlation between two object sets. The feature learning method consists of a feature selection step and a feature transformation step and the spatial reasoning rule learning method uses the supervised learning method.The spatial reasoning approach of this invention automatically characterizes spatial relations of multiple sets of objects by comprehensive collections of spatial mapping features. Some of the features have clearly understandable physical, structural, or geometrical meanings. Others are statistical characterizations, which may not have clear physical, structural or geometrical meanings when considered individually. A combination of these features, however, could characterize subtle physical, structural or geometrical conditions under practical situations. One key advantage of this invention is the ability to characterize subtle differences numerically using a comprehensive feature set.

    摘要翻译: 智能空间推理方法接收多个对象集。 空间映射特征学习方法使用多个对象集来创建至少一个显着的空间映射特征输出。 它使用至少一个空间映射特征来执行空间推理规则学习以创建至少一个空间推理规则输出。 空间映射特征学习方法执行空间映射特征集生成步骤,随后是特征学习步骤。 通过重复应用两个对象集之间的空间相关性来生成空间映射特征集。 特征学习方法由特征选择步骤和特征变换步骤组成,空间推理规则学习方法采用监督学习方法。 本发明的空间推理方法通过空间映射特征的综合集合自动表征多组对象的空间关系。 一些功能具有明确的理解,物理,结构或几何意义。 其他是统计特征,当单独考虑时可能没有明确的物理,结构或几何意义。 然而,这些特征的组合可以在实际情况下表征微妙的物理,结构或几何条件。 本发明的一个关键优点是能够使用综合特征集在数值上表征微妙的差异。

    Structure-guided image inspection
    19.
    发明授权
    Structure-guided image inspection 有权
    结构导向图像检查

    公开(公告)号:US07076093B2

    公开(公告)日:2006-07-11

    申请号:US10247723

    申请日:2002-09-16

    IPC分类号: G06K9/00

    摘要: A structure-guided transformation transforms a region of an image into a region in the structure-transformed image according to the desired structure. The invention achieves efficient and accurate structure-guided processing such as filtering, detection and comparison in the transformed domain and thereby facilitates use of simple operations to enhance or detect straight lines or edges. Structure information is used to enhance and detect image features of interest even when the shape of the image structure is not regular. Both global and local structures of objects can be inspected. Global structure inspection detects gross errors in image structure; therefore side effects caused by mismatched structure-guided processing are avoided. Subtle defects along the edge of a structure can be detected by local structure inspection. Structure information guidance provides an edge detection inspection system that tolerates significant noise and contrast variations.

    摘要翻译: 结构引导变换根据期望的结构将图像的区域变换为结构变换图像中的区域。 本发明实现了有效和准确的结构引导处理,如变换域中的过滤,检测和比较,从而便于使用简单的操作来增强或检测直线或边缘。 即使当图像结构的形状不规则时,结构信息也用于增强和检测感兴趣的图像特征。 可以检查对象的全局和局部结构。 全局结构检查检测图像结构中的粗略错误; 因此避免了由错配的结构引导处理引起的副作用。 沿结构边缘的微小缺陷可以通过局部结构检查来检测。 结构信息指导提供了边缘检测检测系统,其容忍显着的噪声和对比度变化。

    Automatic detection of alignment or registration marks
    20.
    发明授权
    Automatic detection of alignment or registration marks 有权
    自动检测对准或对准标记

    公开(公告)号:US06842538B2

    公开(公告)日:2005-01-11

    申请号:US09815816

    申请日:2001-03-23

    CPC分类号: G06K9/4604

    摘要: Mark detection and position determination are improved by use of directional elongated filters, symmetry, gray scale image processing, structural constraints, and learning. Directional elongated filters are used to pre-process images of registration marks to create masks and enhanced images. Working sequentially, portions of the mark are detected and classified. The input gray scale image of the mark is processed using its structural constraints in conjunction with a mask for the detected mark. A cost function estimation determines mark position and orientation with sub-pixel accuracy. Learning is used to improve specific application performance.

    摘要翻译: 通过使用定向细长滤波器,对称性,灰度图像处理,结构约束和学习来提高标记检测和位置确定。 定向拉长过滤器用于预处理对准标记的图像以创建掩模和增强图像。 按顺序工作,对标记的部分进行检测和分类。 使用其结构约束结合用于检测标记的掩码来处理标记的输入灰度图像。 成本函数估计用子像素精度确定标记位置和方向。 学习用于提高特定的应用程序性能。