摘要:
An ultrasonic therapeutic apparatus consisting of a therapeutic ultrasonic wave generating source driven by a driver circuit to generate therapeutic ultrasonic waves, an in vivo imaging probe so as to obtain a tissue tomographic image in the vicinity of the focus of the therapeutic ultrasonic waves. The imaging probe is used to receive echoes of the ultrasonic pulses emitted from therapeutic ultrasonic wave generating source. The driving conditions for the therapeutic ultrasonic wave generating source is adjusted on the basis of a received echo signal. The received echo signal contains information about actual intensity of the therapeutic ultrasonic waves within a living body, thus improving the safety and reliability of therapy.
摘要:
An ultrasonic therapeutic apparatus consisting of a therapeutic ultrasonic wave generating source driven by a driver circuit to generate therapeutic ultrasonic waves, an in vivo imaging probe so as to obtain a tissue tomographic image in the vicinity of the focus of the therapeutic ultrasonic waves. The imaging probe is used to receive echoes of the ultrasonic pulses emitted from therapeutic ultrasonic wave generating source. The driving conditions for the therapeutic ultrasonic wave generating source is adjusted on the basis of a received echo signal. The received echo signal contains information about actual intensity of the therapeutic ultrasonic waves within a living body, thus improving the safety and reliability of therapy.
摘要:
An ultrasound treatment apparatus includes an ultrasound source for generating treatment ultrasound which is focused, a driving circuit for driving the ultrasound source to generate treatment ultrasound from the ultrasound source, and a controller for controlling to make the driving circuit drive the ultrasound source under an irradiation condition in which an optimization index obtained by the product of the focus intensity (W/cm2), the irradiation period (sec), and the frequency (MHZ) all of the treatment ultrasound falls within an appropriate range from 6,000 (inclusive) to 40,000 (inclusive).
摘要:
An ultrasonic therapeutic apparatus consisting of a therapeutic ultrasonic wave generating source driven by a driver circuit to generate therapeutic ultrasonic waves, an in vivo imaging probe so as to obtain a tissue tomographic image in the vicinity of the focus of the therapeutic ultrasonic waves. The imaging probe is used to receive echoes of the ultrasonic pulses emitted from therapeutic ultrasonic wave generating source. The driving conditions for the therapeutic ultrasonic wave generating source is adjusted on the basis of a received echo signal. The received echo signal contains information about actual intensity of the therapeutic ultrasonic waves within a living body, thus improving the safety and reliability of therapy.
摘要:
An ultrasonic therapeutic apparatus consisting of a therapeutic ultrasonic wave generating source driven by a driver circuit to generate therapeutic ultrasonic waves, an in vivo imaging probe so as to obtain a tissue tomographic image in the vicinity of the focus of the therapeutic ultrasonic waves. The imaging probe is used to receive echoes of the ultrasonic pulses emitted from therapeutic ultrasonic wave generating source. The driving conditions for the therapeutic ultrasonic wave generating source is adjusted on the basis of a received echo signal. The received echo signal contains information about actual intensity of the therapeutic ultrasonic waves within a living body, thus improving the safety and reliability of therapy.
摘要:
An ultrasonic therapeutic apparatus consisting of a therapeutic ultrasonic wave generating source driven by a driver circuit to generate therapeutic ultrasonic waves, an in vivo imaging probe so as to obtain a tissue tomographic image in the vicinity of the focus of the therapeutic ultrasonic waves. The imaging probe is used to receive echoes of the ultrasonic pulses emitted from therapeutic ultrasonic wave generating source. The driving conditions for the therapeutic ultrasonic wave generating source is adjusted on the basis of a received echo signal. The received echo signal contains information about actual intensity of the therapeutic ultrasonic waves within a living body, thus improving the safety and reliability of therapy.
摘要:
This invention relates to a pressure measurement apparatus for inspecting therapentic energy waves, e.g. shock waves or ultrasonic waves. The pressure measurement apparatus for inspecting focal position and pressure of therapeutic energy waves comprises a pressure sensing sheet which changes visually or electrically according to the pressure, and a marker for setting the focal position, mounted on the pressure sensing sheet. Also, the apparatus for inspecting focal position and pressure of therapeutic energy waves in a water tank, comprises, a pressure sensing sheet which changes visually or electrically according to the pressure, a mount for holding the pressure sensing sheet as a flat shape, a mount holder for holding the mount, a marker for setting the focal position, held above the pressure sensing sheet from the mount holder, and holder means for holding the mount holder into the water tank. It is an object of the present invention to provide a pressure measurement apparatus for inspecting therapeutic energy waves, e.g. shock waves and ultrasonic waves wherein the pressure of the energy waves is measured easily. It is another object of the present invention to provide a pressure measurement apparatus for inspecting therapeutic energy waves, wherein it is easy for the user to judge the focal position.
摘要:
A nuclear medical apparatus for obtaining a distribution of a radioisotope in a subject by administering to a subject a radioactive medicine labeled with a radioisotope, detecting gamma rays given off from the radioisotope in a gamma-ray detecting section and counting the detected gamma rays in a count section. A correcting section is provided to correct for a count taken at the count section, by use of collection efficiency data determined according to the gamma-ray detecting section and an energy the gamma rays possesses.
摘要:
When an affected region is greater than a focal point of a therapy ultrasonic wave, a therapy region is set in a way to include the affected region. The focal point of the therapy ultrasonic wave is moved along a planned course designed based on the therapy region, so that it is possible to treat that whole affected region greater than the focal point. In the present invention, before an actual therapy, that is, before irradiation with the therapy ultrasonic wave, a therapy simulation is made to see whether or not a better treatment is carried out. In the therapy simulation, an applicator is moved in accordance with a planned course designed based on the therapy region. During the movement, the internal region of a human subject is continuously scanned and imaged by the ultrasonic probe. A cross-sectional image obtained is displayed together with a focal point marker representing the focal point. In this way, the applicator is moved along an actual planned course and, by observing a positional relation between the subject and the focal point, accurate checking is made to see whether or not the therapy region is set relative to the affected region.
摘要:
A detector having a collimator in a position at a specific angle with respect to a therapeutic X-ray beam is mounted to selectively detect only scattering radiation in the direction. To three-dimensionally obtain a distribution of places where scattering occurs in a patient body, a detector is rotated during irradiation and scattering radiation is measured from all of directions. After that, a reconstructing process is performed, and a distribution of occurrence of scattering radiation in the subject is three-dimensionally imaged. Since angles and amounts of X-rays scattered by Compton scattering are known theoretically, if scattering radiation at a certain angle can be detected, the number of scattering radiation at other angles can be also estimated. On the basis of the theory, images of distribution of scattering radiation sources are converted to images of distribution of absorption of radiation.