Abstract:
In one example, an apparatus includes: a delay unit to delay a demodulated signal obtained from an input radio frequency (RF) frequency modulation (FM) signal; a filter to filter the demodulated signal and output a filtered demodulated signal; an impulse detection circuit to receive the filtered demodulated signal and detect presence of an impulse in the demodulated signal; and an impulse removal circuit to remove the detected impulse from the demodulated signal.
Abstract:
In an embodiment, an apparatus includes a first tuner to receive a radio frequency (RF) signal from a first antenna and to process the RF signal to generate a first time-domain quadrature signal, a second tuner to receive the RF signal from a second antenna and to process the RF signal to generate a second time-domain quadrature signal, and a combiner circuit to receive the first and second time-domain quadrature signals.
Abstract:
In an embodiment, an apparatus includes a first tuner to receive a radio frequency (RF) signal from a first antenna and to process the RF signal to generate a first time-domain quadrature signal, a second tuner to receive the RF signal from a second antenna and to process the RF signal to generate a second time-domain quadrature signal, and a combiner circuit to receive the first and second time-domain quadrature signals.
Abstract:
In an embodiment, an apparatus includes: a sensor to sense real world information; a digitizer coupled to the sensor to digitize the real world information into digitized information; a signal processor coupled to the digitizer to process the digitized information into an image; a discriminator coupled to the signal processor to determine, based at least in part on the image, whether the real world information comprises an anomaly, where the discriminator is trained via a generative adversarial network; and a controller coupled to the discriminator.
Abstract:
A system and method of implementing a neural network with a non-linear activation function is disclosed. A Universal Coordinate Rotation Digital Computer (CORDIC) is used to implement the activation function. Advantageously, the CORDIC is also used during training for back propagation. Using a CORDIC, activation functions such as hyperbolic tangent and sigmoid may be implemented without the use of a multiplier. Further, the derivatives of these functions, which are needed for back propagation, can also be implemented using the CORDIC.
Abstract:
Embodiments include cryptographic circuits having isolated operation with respect to embedded sensor operations to mitigate side-channel attacks. A cryptographic circuit, a sensor, and an analog-to-digital converter (ADC) circuit are integrated into an integrated circuit along with a cryptographic circuit. A sensed signal is output with the sensor, and the sensed signal is converted to digital data using the ADC circuit. Further, cryptographic data is generated using one or more secret keys and the cryptographic circuit. The generation of the cryptographic data has isolated operation with respect to the operation of the sensor and the ADC circuit. The isolated operation mitigates side-channel attacks. The isolated operation can be achieved using power supply, clock, and/or reset circuits for the cryptographic circuit that are electrically isolated from similar circuits for the sensor and ADC circuit. The isolated operation can also be achieved using time-division multiplex operations. Other variations can also be implemented.
Abstract:
An integrated circuit includes a tamper sensor that has plurality of state circuits. Each of the plurality of state circuits has a respective output that provides a respective logic state. When operating properly, the respective logic state is toggled in response to a clock signal. The respective logic state fails to toggle in response to a respective fault injection. The tamper sensor has an output that provides a fault signal in response to a difference in the respective logic state of the plurality of state circuits. Additionally, the integrated circuit includes a protected circuit, as well as a tamper response circuit. The tamper response circuit is connected to the tamper sensor and to the protected circuit. The tamper response circuit executes a protection operation to secure the protected circuit in response to the fault signal.
Abstract:
In one example, an apparatus includes: a delay unit to delay a demodulated signal obtained from an input radio frequency (RF) frequency modulation (FM) signal; a filter to filter the demodulated signal and output a filtered demodulated signal; an impulse detection circuit to receive the filtered demodulated signal and detect presence of an impulse in the demodulated signal; and an impulse removal circuit to remove the detected impulse from the demodulated signal.
Abstract:
In an embodiment, an apparatus includes a buffer to store incoming orthogonal frequency division multiplexed (OFDM) samples. This buffer is configured to output the OFDM samples according to a read pointer that can be adjusted by a sum value corresponding to a sum of a length of a symbol and a feedback value, to align the read pointer with the symbol. In addition, the apparatus further includes a feedback circuit coupled to the buffer to receive the output OFDM samples and generate the feedback value based at least in part on the output OFDM samples.
Abstract:
In one embodiment, a receiver front end circuit can receive and process multiple radio frequency (RF) signals and output downconverted signals corresponding to these signals. In turn, multiple signal processors can be coupled to this front end. Specifically, a first signal processor can receive and process the downconverted signals to output a first signal obtained from content of a first RF signal, and a second signal processor can receive and process the downconverted signals to output a second signal obtained from content of a second RF signal. In addition, the apparatus may include a detection circuit coupled to the receiver front end circuit to detect presence of at least the second signal and enable the second signal processor responsive to the detected presence.