Abstract:
Systems and methods are described for cross scheduling transmissions from an access node. Data may be communicated between an access node and a wireless device over a first frequency band. A first application and a second application associated with the wireless device may be determined, where each of the applications comprises an application type. Based on the application type one of the first frequency band and a second frequency band may be selected for the first application and the second application, where the selected frequency bands are different. Transmissions associated with the first application may then be scheduled over the frequency band selected for the first application and transmissions associated with the second application may then be scheduled over the frequency band selected for the second application.
Abstract:
In systems and methods of determining a transmission order of packets in a wireless communication network, one method includes determining an efficiency of time frequency frame allocations performed by a network node over a predetermined period of time. The method also includes determining when the efficiency of the time frequency frame allocations is below a threshold. The method further includes rearranging two or more time frequency frames in one or more time transmission intervals when the efficiency of the time frequency frame allocations is determined to be below the threshold.
Abstract:
Systems and methods are described for determining an access node for a wireless device. An increased signal level for a first signal and an adjustment value based on the increased signal level may be determined. An indication of the adjustment value and the first signal may be transmitted from a first access node. A wireless device in communication with the first access node may transmit signal information comprising a first signal level associated with the first access node and a second signal level associated with a second access node, where the signal information is transmitted in response to a reporting event triggered at the wireless device based on the adjustment value and at least one of a received signal level for the first signal and a received signal level for the second signal. Based on the signal information, one of the first access node and the second access node may be selected for communication with the wireless device. The wireless device may be instructed to communicate with the selected access node.
Abstract:
Systems and methods are described for determining a power option for an access node. Application requirements for a first plurality of wireless devices in communication with a first access node may be identified for each wireless device. The number of wireless devices that comprise a met application requirement may then be determined. When that number meets a first criteria, a plurality of power options for transmitting a first signal may be determined. For each power option, a second number of the first plurality of wireless devices and a third number of wireless devices in communication with a second access node may be estimated. Based on the estimated numbers for the determined power options, a power option may be selected and the first access node may transmit the first signal according to the selected power option.
Abstract:
Systems and methods for sending data packets to a wireless device are provided. An access node can determine a number of wireless devices in communication with the access node that meets a signal quality criteria. The access node can determine when the number of wireless devices that meets the signal quality criteria exceeds a threshold. The access node can receive from a content node first multimedia broadcast service (MBMS) data. The access node can encode the first MBMS data into second MBMS data when the number of wireless devices that meets the signal quality criteria exceeds the threshold. The encoding can be based on the number of wireless devices in communication with the access node that meets the signal quality criteria, a load at the content node, a load at the access node, and a bit error rate of each wireless device in communication with the access node.
Abstract:
An application requirement is identified of a wireless device in communication with an access node using a first radio access technology, and a probability is determined that a communication session of the wireless device using the first radio access technology will be dropped based on a wireless device mobility and characteristics of a plurality of neighbor access nodes of the access node. A handover threshold is calculated based on the application requirement and the determined probability, and when a signal level of the first radio access technology received at the wireless device meets the handover threshold, the wireless device is instructed to change from communicating with the access node using the first radio access technology to communicating with the access node using the second radio access technology.
Abstract:
In systems and methods of allocating root sequences to access nodes, a first coverage radius and a first neighbor list of a first access node are determined, wherein the first neighbor list comprises second access nodes which are each a neighbor access node of the first access node. A second coverage radius and a second neighbor list of each of the second access nodes is then determined. An access node comprising a largest coverage radius from among the first access node and the second access nodes is selected. A number of root sequences required for the selected access node is calculated based on the coverage radius of the selected access node, and root sequences are assigned to the selected access node according to the number of root sequences required.
Abstract:
In systems and methods of frequency band selection for wireless device communication, a first frequency band comprising a first channel bandwidth is associated with a first application type and a second frequency band comprising a second channel bandwidth is associated with a second application type. When a request to establish a communication session is received at an access node from a wireless device, an application type associated with the request, a frequency band for the communication session with the wireless device based on the application type from among the first frequency band and the second frequency band, and the communication session is established between the access node and the wireless device using the selected frequency band.
Abstract:
In systems and methods of transferring information to a wireless device, a first portion of information is received and stored in a memory of the wireless device, and the first portion is presented while a second portion of the information is received. A presentation rate at which the first portion is presented is determined, and a time until the first portion is completely presented is determined based on the presentation rate and a size of the first portion. A number of times that a packet retransmission criteria is met is determined, and a maximum permitted number of packet retransmissions is adjusted based on the time until the first portion is completely presented and the number of times that the packet retransmission criteria is met.
Abstract:
In systems and methods of reducing wireless communication signaling overhead, it is determined that communication resource request traffic from a plurality of wireless devices in communication with an access node to communicate with a communication network meets a first threshold. One of the plurality of wireless devices is selected to operate as a router wireless device based on a power storage level and an assigned modulation and coding scheme of each of the plurality of wireless devices. At least one of the unselected wireless devices is instructed to communicate with the communication network via the selected router wireless device.