Abstract:
The present invention provides a method of detecting an enzyme in a sample wherein the enzyme is capable of adding or removing a chemical moiety to or from a nucleic acid molecule, which thereby confers altered sensitivity of the nucleic acid molecule in a subsequent process. The invention also relates to diagnostic methods which take advantage of the method of the invention and kits which are useful for carrying out the method of the invention.
Abstract:
The present invention relates to compounds of formula 1 or pharmaceutically acceptable salts thereof, wherein one of R1 and R2 is methyl, ethyl or isopropyl, and the other is H; R3 and R4 are each independently H, branched or unbranched C1-C6 alkyl, or aryl, and wherein at least one of R3 and R4 is other than H; R5 is a branched or unbranched C1-C5 alkyl group or a C1-C6 cycloalkyl group, each of which may be optionally substituted with one or more OH groups; R6, R7, R8 and R9 are each independently H, halogen, NO2, OH, OMe, CN, NH2, COOH, CONH2, or SO2NH2. A further aspect of the invention relates to pharmaceutical compositions comprising compounds of formula 1, and the use of said compounds in treating proliferative disorders, viral disorders, CNS disorders, diabetes, stroke, alopecia or neurodegenerative disorders.
Abstract:
A system transmits digital data over an optical fiber at high aggregate data rates and high bandwidth efficiencies. The system includes a modulation stage, a frequency division multiplexer, and an optical modulator. The modulation stage QAM-modulates a plurality of incoming digital data channels. The frequency division multiplexer combines the QAM-modulated signals by frequency division multiplexing them into an RF signal. The optical modulator uses the RF signal to modulate an optical carrier for transmission over an optical fiber.
Abstract:
A method of detecting a ligase expressing micro-organism in a sample comprises steps of treating the sample under conditions that inhibit the activity of ATP-dependent ligase from mammalian cells but which do not inhibit the activity of the microbial ligases, contacting the sample or a portion of the sample with a nucleic acid molecule which acts as a substrate for ligase activity in the sample, incubating the thus contacted sample under conditions suitable for ligase activity; and specifically determining the presence and/or the amount of a ligated nucleic acid molecule resulting from the action of the ligase on the substrate nucleic acid molecule to indicate the presence of the ligase expressing micro-organism. The micro-organism may be a fungus or a bacterium or both. High pH conditions may be employed to inactivate mammalian ligases. Related kits are described.
Abstract:
An improved method of detecting an enzyme in a sample, which enzyme is capable of adding or removing a chemical moiety to or from a nucleic acid molecule, thereby conferring the nucleic acid molecule with the ability to be extended to generate a novel detectable nucleic acid molecule, comprises the steps of allowing the sample to be tested for the presence of the enzyme to interact with the nucleic acid molecule; and testing for interaction of the enzyme with the nucleic acid molecule by detecting the novel nucleic acid molecule generated only in the presence of the enzyme. The preferred enzyme is a phosphatase. The methods have a number of applications, for example in enhancing the sensitivity of immunoassays, for detecting pathogen associated phosphatase, for diagnosing certain conditions and for detecting specific contaminants in a sample.
Abstract:
The present invention relates to compounds of formula I or a pharmaceutically acceptable salt thereof wherein R2 is 2-hydroxymethylpyrrolidin-1-yl, or NHCH(R4)CH(R3)OH, wherein R3 is hydrogen or methyl and R4 is methyl, ethyl or isopropyl; R6 is 3-nitrophenylamino, 3,4-dimethoxybenzylamino, 3-iodobenzyl-amino, pyrid-2-yl-methylamino, pyrid-4-yl-methylamino or indan-5-amino; R9 is isopropyl or cyclopentanyl. In a further aspect, the invention relates to pharmaceutical compositions comprising said compounds, and the use thereof in treating antiproliferative disorders and or viral disorders.
Abstract:
The present invention relates to compounds of formula 1 or pharmaceutically acceptable salts thereof, wherein one of R1 and R2 is methyl, ethyl or isopropyl, and the other is H; R3 and R4 are each independently H, branched or unbranched C1-C6 alkyl, or aryl, and wherein at least one of R3 and R4 is other than H; R5 is a branched or unbranched C1-C5 alkyl group or a C1-C6 cycloalkyl group, each of which may be optionally substituted with one or more OH groups; R6, R7, R8 and R9 are each independently H, halogen, NO2, OH, OMe, CN, NH2, COOH, CONH2, or SO2NH2. A further aspect of the invention relates to pharmaceutical compositions comprising compounds of formula 1, and the use of said compounds in treating proliferative disorders, viral disorders, stroke, alopecia, CNS disorders, neurodegenerative disorders, or diabetes.
Abstract:
A method of detecting a molecule associated with viability of one or more cells or organisms in a sample comprises the initial step of contacting the sample with an enzyme, which enzyme is capable of adding or removing a chemical moiety to or from a nucleic acid molecule in the presence of the molecule associated with viability of the of the one or more cells or organisms. This thereby generates a novel detectable nucleic acid molecule. The next step involves detecting the presence of the molecule associated with viability of the one or more cells or organisms by detecting the novel nucleic acid molecule generated only in the presence of the molecule associated with viability of the one or more cells or organisms. A most preferred molecule associated with viability is ATP, although NAD may also be detected. A preferred enzyme for use in the methods is ligase. The method has numerous applications, in particular in monitoring viability of cells, toxicology testing and determining whether there is contamination in a sample or on a surface. Kits are also provided for carrying out the methods.
Abstract:
The present invention relates to compounds of formula I or pharmaceutically acceptable salts thereof, wherein one of R1 and R2 is methyl, ethyl or isopropyl, and the other is H; R3 and R4 are each independently H, branched or un branched C1-C6 alkyl, or aryl, and wherein at least one of R3 and R4 is other than H; R5 is a branched or unbranched C1-C5 alkyl group or a C1-C6 cycloalkyl group, each of which may be optionally substituted with one or more OH groups; R6, R7, R8 and R9 are each independently H, halogen, NO2, OH, OMe, CN, NH2, COOH, CONH2, or SO2NH2. A further aspect of the invention relates to pharmaceutical compositions comprising compounds of formula 1, and the use of said compounds in treating proliferative disorders, viral disorders, CNS disorders, diabetes, stroke, alopecia or neurodegenerative disorders.
Abstract:
A phased antenna array is disclosed. The phased antenna array is composed of one or more modules and has a plurality of antenna. The array has a plurality of antenna configured to operate as an array and each module has at least one antenna. The modules have a substrate that supports the antenna, a microelectronic device for sending signals to or receiving signals from said antenna and conductive traces that connect that antenna to the microelectronic device. In those embodiments where the phased antenna array has more than one module, a common substrate supports the one or more modules. A combination of circuitry and interconnects achieves the desired electrical interconnection between the modules.