Abstract:
A single-ion electrolyte achieves conductivity greater than 10.sup.-3 S/cm at 20.degree. C. by employing repeating mer units which are functionalized by fluoroalkylsulfonate groups. Preferred backbones for the electrolyte include polysiloxanes, polymethacrylates and poly(alkylene oxides). More preferred backbones have the structure ##STR1## wherein A is selected from the group consisting of C and Si such that when A is C then R.sup.4 is (CH.sub.2).sub.1-100' and when A is Si then R.sup.4 is O; R.sup.1 and R.sup.2 are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, fluorinated lower alkyl, fluorinated lower alkoxy, and fluoroalkylsulfonate; and R.sup.3 is null or selected from the group consisting of O, (O).sub.1-100, O--CH.sub.2, (O).sub.1-100 --(CH.sub.2).sub.1-100.
Abstract:
The present invention relates to a tetraketone of the structure ##STR1##wherein M is a metal atom and R is selected from phenyl, alkyl substituted phenyl or halogen substituted phenyl. The process to prepare this tetraketone is disclosed. The present invention also relates to a process to produce the tetraketone structure(I). The present invention also relates to the novel polymer of the structure: ##STR2##and to the process to produce this novel polymer. R is as defined hereinabove, and Ar is a tetraamine substituted organic moiety having at least one aromatic ring. These polymers are useful as liquid crystals and in non-linear optical devices.
Abstract:
The present invention is directed to a process for forming a layer of palladium on a substrate, comprising:preparing a solution of a palladium precursor, wherein the palladium precursor consists ofPd(OOCR.sup.1).sub.m (OOCR.sup.2).sub.nwhereinR.sup.1 is hydrogen, alkyl, alkenyl, alkynyl, --R.sup.3 COOH, alkyl from 1 to 5 carbons substituted with one or two hydroxyl groups,R.sup.2 is hydrogen, alkyl, alkenyl, alkynyl, --R.sup.3 COOH, alkyl from 1 to 5 carbon atoms substituted with one or two hydroxyl groups, --CHO,R.sup.3 is alkyl, and alkyl groups from 1 to 5 carbon atoms substituted with one or two hydroxyl groupsm and n are real numbers or fractions, and m+n=2;applying the palladium precursor to the surface of the substrate;decomposing the palladium precursor by subjecting the precursor to heat.
Abstract translation:本发明涉及一种在基底上形成钯层的方法,包括:制备钯前体溶液,其中钯前体由Pd(OOCR1)m(OOCR2)n组成,其中R1是氢,烷基,烯基, 炔基,-R3COOH,被一个或两个羟基取代的1至5个碳的烷基,R2是氢,烷基,烯基,炔基,-R3COOH,被一个或两个羟基取代的1至5个碳原子的烷基,-CHO, R3是烷基,被一个或两个羟基取代的1至5个碳原子的烷基m和n是实数或分数,m + n = 2; 将钯前体施加到基底的表面; 通过使前体受热来分解钯前体。
Abstract:
A process for forming a layer of gold on a substrate, comprising: preparing a solution of a gold precursor wherein the gold precursor consists of Au(OH).sub.p (OOCR.sup.1).sub.q (OOCR.sup.2).sub.r wherein R.sup.1 is selected from the group of hydrogen, alkyl, alkenyl, and alkynyl, and R.sup.2 is selected from the group of hydrogen, alkyl from 2 to 10 carbon atoms, alkenyl, or alkynyl, and p+q+r=3. Applying the solution of the gold precursor to the surface of the substrate. Decomposing the gold precursor by subjecting the gold precursor to heat.
Abstract:
Novel batteries formulated with compositions comprising liquid electrolyte plasticizers having enhanced ambient temperature conductivity are provided. These plasticizers have the following general structures ##STR1## in which R.sup.a, R.sup.b, R.sup.c, X, Y, Z, .alpha., .beta., .gamma., and l are as defined herein. Novel compositions and films comprising these plasticizers are also provided.
Abstract:
The present invention relates to porphyrin and metal ion-containing monomers and polymers. The monomers ##STR1## wherein R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are independently selected from H, alkyl having 1 to 6 carbon atoms, phenyl or phenyl substituted with 1 to 3 alkyl groups each having 1 to 6 carbons or with 1 to 3 halogen atoms and A is a metal atom, are used with a diamine or a dialdehyde respectively to produce a porphyrin polymer or a metal ion containing porphyrin polymer. These polymers are useful as electrical conductors and as liquid crystal polymers.
Abstract:
The present invention relates to a process of manufacture of an essentially smooth texture-free conductive polymer comprising poly(dithiophene) which is subsequently doped with a dopant comprising an organometallic compound, preferably an optionally substituted metal phthalocyanine. Specifically, the process relates to a process to produce a smooth, texture-free conductive polymer comprising poly(dithiophene) and an organometallic compound which process comprises:A. contacting a solution itself comprising:(a) dithiophene is present in between about 0.01 and 0.001 M concentration;(b) a water-soluble salt of an optionally substituted organometallic wherein the metal is selected from iron, copper, cobalt or nickel, at a concentration of between about 0.01 and 10 mM;(c) in a solution of acetonitrile/water in a ratio of between about 30:70 and 10:90 percent by volume with a cycling potential of between about 0.1 volts and 10 volts at between about 0.degree. and 95.degree. C. for between about (0.1 and 60 minutes) with an electrode selected from one of a second metal, wherein the second metal is selected from platinum, palladium, indium, gold or mixtures thereof or from an indium-tin oxide covered glass; andB. recovering the electrically conductive polymer. The materials are useful in the manufacture of electrochromic displays.
Abstract:
Polyfunctional acyl silanes of the formula ##STR1## are disclosed as novel crosslinking agents. Composition and processes involving the same are also disclosed.
Abstract:
Electrodes are manufactured using a fire-retardant solvent and a polymerizable monomer. Electrodes according to the present invention are contemplated to find applicability in substantially any electrode containing device, including batteries. A preferred class of fire-retardant solvents includes solvents that generate a fire-retardant gas upon decomposition. One subclass includes compositions that produce carbon dioxide upon decomposition. Other subclasses include species that generate non-CO2 gases upon decomposition, such as CO, SO2, SO3, NO, N2O, NO2, or N2. A second preferred class of fire-retardant solvents include solvents that are fire-retardant without generating a fire-retardant gas upon decomposition, and are electrochemically inactive. Subclasses here include the many phosphates, phosphazenes, borates, siloxanes, fluorinated carbonates and fluorinated ethers that are already known to be included in a fire-retardant electrolyte. It is contemplated that the same solvent may be used in both an electrode paste and an electrolyte. It is also contemplated that the same polymer may be used in both an electrode paste and an electrolyte. An exemplary polymer for this purpose is polyvinylidene fluoride (PVDF). In one or both such cases, an electrolyte may advantageously be applied directly to the porous electrode surface, providing excellent interlayer adhesion and thus low interfacial resistance.
Abstract:
Novel devices for providing shielding from and absorption of broadband electromagnetic radiation, and methods of manufacturing and using these devices, are disclosed. The device is comprised of a perforated electrical absorbing layer, containing conductive polymers, laminated to a metal plate. Additional layers may be incorporated into the device including one or more additional layers of electrical absorbing layers, magnetic absorbing layers and impedance matching layers.