Abstract:
One of the biggest challenges faced by oil and gas companies is to monitor such long pipelines for leak events and generate false leak event alarms during routine pipe maintenance. A data associated with a first sensing unit is processed to obtain an instant timing information (T0) of a leak event in a conduit at a test environment. A data associated with a second sensing unit is processed to obtain a transient signal associated with the leak event at a specific band. An accelerometer data is filtered to obtain a band passed filtered accelerometer signal (Accelbpf). The Accelbpf is truncated in a time domain from the T0 to a duration Td of the leak event to obtain a temporal template signal (Acceltemplate). A leak event of a real-time conduit is dynamically detected at a physical environment based on Acceltemplate when a cross-correlation value is greater than a threshold value (∝).
Abstract:
Ultra Wide Band (UWB) based Real Time Location Systems (RTLS) that are being used for location tracking suffer from due to environment specific errors that are introduced due to factors such as difference in reflection and propagation. The disclosure herein generally relates to object localization, and, more particularly, to a method and system of error modelling for object localization using Ultra Wide Band (UWB) sensors. The error modelling allows the system to correct a determined location of an object being tracked, to determine a corrected location.
Abstract:
This disclosure relates to a system and method for measuring average temperature of mixed fluid in an enclosed chamber. Measurement is based on two independent principle as measuring variation in acoustic wave velocity and variation in resistivity that works on a single setup. First principle is based on measuring acoustic wave velocity in a known medium, which is isolated from the surrounding. The system comprises a primary pipe and a secondary pipe, wherein the ends of the pipes reside inside the enclosed chamber. The primary pipe is made out of good conductor of heat and filled with air. Ends of the primary pipe is fitted with a transducers have one transmitter at one end and one receiver at another end. Average temperature of the mixed fluid is measured based on the variations in sound velocity of acoustic wave passed through the primary pipe and resistivity variations of the primary pipe.
Abstract:
Temperature measurement is an important part of many potential applications in process industry. Conventional temperature measurement methods require manual intervention for process monitoring and fail to provide accurate and precise measurement of temperature of an enclosed mixed fluid chamber. The present disclosure provides artificial intelligence based temperature measurement in mixed fluid chamber. A plurality of inputs pertaining to the mixed fluid chamber are received to build a fluid based model. The fluid based model is used to generate one or more fluid parameters. The one or more fluid parameters are used along with a ground truth temperature data and the received plurality of inputs for training an artificial intelligence (AI) based model. However, the AI based model is trained with and without knowledge of fluid flow. The trained AI based model is further used to accurately estimate temperature of the mixed fluid chamber for a plurality of test input data.
Abstract:
The present disclosure provides means for detecting and tracking a moving object using RADAR and ultrasonic sensors. A stationary RADAR detects the moving object and estimates speed and two rotating ultrasonic sensors determine distance of the detected object. An incrementally changing orientation of the ultrasound sensors is associated with an angular speed of rotation based on a last logged distance of the moving object from the ultrasound sensors. Once the moving object is detected, based on an adaptively changing sampling frequency, the moving object is continuously tracked in real time. Conventionally, multiple RADARs are needed for location estimation and motion tracking. Also, merely using a RADAR in combination with an ultrasound sensor also does not serve the purpose since both sensors are static. The present disclosure provides a simple cost effective alternative that can find application in say tracking of an elderly person living alone in an unobtrusive manner.
Abstract:
Disclosed is a method and system for reducing data size of raw data. The system may process the raw data for calculating Renyi entropies, Wigner Ville Distributions (WVD's), Wigner Ville Spectrum (WVS) and Renyi divergence. The system may identify a first set of windows followed by a second set of windows while processing the raw data. Further, the system may calculate Eigen values for a Time-Frequency matrix of WVS of the second set of windows. The system may filter the second set of windows based on the Eigen values for preparing a third set of windows. The system prepares clusters of the Eigen values. The system may compute centroids of the clusters of the Eigen values. The system classifies each window of the third set of windows into one of the clusters indicating a relevant category of event identified from the raw data.
Abstract:
The present disclosure provides a method for surface wear inspection using millimeter wave radar. The system initially receives a plurality of uncompressed raw Synthetic Aperture Radar (SAR) images. Further, a plurality of reconstructed SAR images are generated based on the plurality of uncompressed raw SAR images using a variable focusing based Range Doppler Algorithm (RDA). Further, a master image and a slave image are selected from the reconstructed SAR images and corresponding anchor points are assigned. Further a plurality of fine level and coarse level shift coordinates are computed based on the corresponding anchor points. Further, a net shift value is computed based on the plurality of fine level and coarse level shift coordinates. The master and the slave images are aligned based on the net shift value and the interferogram is generated. The interferogram is further analyzed to profile the corresponding deformation pertaining to the surface under test.
Abstract:
The disclosure relates generally to methods and systems for monitoring lubricant oil condition using a photoacoustic modelling. Conventional techniques in the art for checking the condition of the lubricant oil is laboratory based and thus time consuming, error prone and not efficient. The present disclosure discloses a photoacoustic simulation model which is developed utilizing a photonic model such as a Monte Carlo method-based optical simulation integrated with a finite element model such as a k-wave toolbox-based acoustic measurement. The photoacoustic simulation model of the present disclosure is used to obtain a photoacoustic signal of the lubricant oil sample and a set of statistical features are determined from the obtained photoacoustic signal. The determined set of statistical features are then used as a training data to develop a machine learning (ML) model which is used to classify a type of contamination of the test lubricating oil.
Abstract:
Lighting conditions affect quality of images being captured. In traditional systems, illuminators (light sources) are used to illuminate the objects without considering illumination levels at different zones/sides of an object being photographed. As a result, all illuminators may run at maximum capacity, resulting in wastage of power and compromising efficiency of the system. The disclosure herein generally relates to illumination of objects, and, more particularly, to a method and system for adaptive illumination of objects. The system determines illumination at different zones of the object, and further identifies zones that are not illuminated properly in comparison with a threshold of illumination. Further the system controls intensity of only the illuminators which are responsible for illumination of the zones in which measured illumination is below a threshold of illumination, and increases the intensity by a value determined based on difference between measured illumination and the threshold of illumination, for each zone.
Abstract:
This disclosure relates to selection of optimum channel in twin radars for efficient detection of cardiopulmonary signal rates. State-of-the-art solutions involve use of IQ (In-phase and Quadrature) channel radar which need continuous calibration. Distance of the radar from a subject being monitored affects performance. The present disclosure enables enhanced cardiopulmonary signal rate monitoring using a time domain approach, wherein only the data from signal reflected off the radar is considered. The solution is also time window adaptive. Signal property and radar physics-based methods have been implemented for selecting an optimum channel in twin radars thereby enhancing detection of respiration rate and breath rate.