Abstract:
A method for pseudo channel hopping in a node of a wireless mesh network is provided that includes scanning each channel of a plurality of channels used for packet transmission by the node, wherein each channel is scanned for a scan dwell time associated with the channel, updating statistics for each channel based on packets received by the node during the scanning of the channel, and changing scan dwell times of the plurality of channels periodically based on the statistics.
Abstract:
A method of channel access for a radio device in an asynchronous channel hopping wireless network includes a channel hopping coordinator first radio device transmitting its receive (Rx) channel hopping sequence to a fixed or semi-channel hopping sleepy radio device. The sleepy radio device tracks the first radio device's Rx channel using the channel hopping sequence and transmits a poll frame exclusive of a unicast schedule information element (US-IE) on the first radio device's current Rx channel to the first radio device. The sleepy radio device moves to an updated Rx channel that is a function of the current Rx channel. The first radio device receives the poll frame and then computes the updated Rx channel as the function of the current Rx channel. After the computing, the first radio device transmits a data frame to the sleepy radio device on the updated Rx channel.
Abstract:
A method of transmitting association requests in a wireless sensor network includes transmitting an association request from a leaf node to an intermediate node. The method further includes transmitting the association request from the intermediate node during one of either a shared time slot or a dedicated time slot in response to at least one of the timing of dedicated time slots and data collision rates during shared time slots.
Abstract:
Transmission on a shared wireless communication channel is contended for by selecting one of a predetermined plurality of dedicated channel sensing intervals, and then performing channel sensing relative to the channel during the selected channel sensing interval. A transmission is sent on the channel in response to a determination that the channel is idle.
Abstract:
A device may be coupled to a time slot based communication system and receive a timing beacon packet that is broadcast in a time slot of the communication system at a periodic rate, in which the network uses a time slotted channel hopping protocol of sequential frames each having a plurality of time slots. The device may synchronize its time base to the timing beacon. The device may calculate a sleep time corresponding to a number of time slots until a next time slot that is scheduled for use by the device and then place the device in a sleep mode. The device may be awakened after the sleep time and operate during the next time slot. The device may repeat the process of calculating a sleep time, going into sleep mode, and waking for operation after the sleep time in order to reduce power consumption.
Abstract:
A method of BLE-Mesh communications includes providing a dual-mode BLE-Mesh device including dual-mode RF driver, dual-mode manager, a BLE stack for BLE operations. and a mesh stack for mesh operations in a BLE-mesh network having a BLE relay device and a functional end BLE device. The BLE-mesh device has a periodic set of time indexed data slots common throughout the BLE-mesh network which provides a BLE event timeline for BLE connection events. The dual-mode BLE device implements an event clustering algorithm that delays or advances mesh events with respect to a timing the BLE connection events for clustering together their respective occurrences into continuous BLE/Mesh events to reduce a duty cycle by reducing a number of transitions from active mode to sleep mode and from sleep mode to active mode. The BLE-Mesh device communicates in the BLE-mesh network using the continuous BLE/Mesh events with at least one mesh device.
Abstract:
A method for concurrent execution of multiple protocols using a single radio of a wireless communication device is provided that includes receiving, in a radio command scheduler, a first radio command from a first protocol stack of a plurality of protocol states executing on the wireless communication device, determining a scheduling policy for the first radio command based on a current state of each protocol stack of the plurality of protocol stacks, and scheduling the first radio command in a radio command queue for the radio based on the scheduling policy, wherein the radio command scheduler uses the radio command queue to schedule radio commands received from the plurality of protocol stacks.
Abstract:
A method for pseudo channel hopping in a node of a wireless mesh network is provided that includes scanning each channel of a plurality of channels used for packet transmission by the node, wherein each channel is scanned for a scan dwell time associated with the channel, updating statistics for each channel based on packets received by the node during the scanning of the channel, and changing scan dwell times of the plurality of channels periodically based on the statistics.
Abstract:
A method for concurrent execution of multiple protocols using a single radio of a wireless communication device is provided that includes receiving, in a radio command scheduler, a first radio command from a first protocol stack of a plurality of protocol states executing on the wireless communication device, determining a scheduling policy for the first radio command based on a current state of each protocol stack of the plurality of protocol stacks, and scheduling the first radio command in a radio command queue for the radio based on the scheduling policy, wherein the radio command scheduler uses the radio command queue to schedule radio commands received from the plurality of protocol stacks.
Abstract:
A method for pseudo channel hopping in a node of a wireless mesh network is provided that includes scanning each channel of a plurality of channels used for packet transmission by the node, wherein each channel is scanned for a scan dwell time associated with the channel, updating statistics for each channel based on packets received by the node during the scanning of the channel, and selecting a channel of the plurality of channels for scanning based on the statistics when the scan dwell time of a currently scanned channel ends.