Abstract:
Described examples include methods of fabricating conductive and resistive structures by direct-write variable impedance patterning using nanoparticle-based metallization layers or chemical reaction-based deposition. In some examples, a low conductivity nanoparticle material is deposited over a surface. The nanoparticle material is selectively illuminated at different applied energy levels via illumination source power adjustments and/or scan rate adjustments for selective patterned sintering to create conductive circuit structures as well as resistive circuit structures including gradient resistive circuit structures having an electrical resistivity profile that varies along the structure length. Further examples include methods in which a non-conductive reactant layer is deposited or patterned, and a second solution is deposited in varying amounts using an additive deposition for reaction with the reactant layer to form controllably conductive structures.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and a transition region, with a cladding surrounding the dielectric core member. The body portion of the core member has a first dielectric constant. The transition region of the core member has a graduated dielectric constant value that gradually changes from the first dielectric constant value adjacent the body portion to a third dielectric constant.
Abstract:
A digital system has a dielectric core waveguide that has a longitudinal dielectric core member. The core member has a body portion and may have a cladding surrounding the dielectric core member. A radiated radio frequency (RF) signal may be received on a first portion of a radiating structure embedded in the end of a dielectric waveguide (DWG). Simultaneously, a derivative RF signal may be launched into the DWG from a second portion of the radiating structure embedded in the DWG.
Abstract:
A digital system has a substrate having a top surface on which a waveguide is formed on the top surface of the substrate. The waveguide is formed by a conformal base layer formed on the top surface of the substrate, two spaced apart sidewalls, and a top conformal layer connected to the base layer to form a longitudinal core region. The waveguide may be a metallic or otherwise conductive waveguide, a dielectric waveguide, a micro-coax, etc.
Abstract:
Described examples include methods of fabricating conductive and resistive structures by direct-write variable impedance patterning using nanoparticle-based metallization layers or chemical reaction-based deposition. In some examples, a low conductivity nanoparticle material is deposited over a surface. The nanoparticle material is selectively illuminated at different applied energy levels via illumination source power adjustments and/or scan rate adjustments for selective patterned sintering to create conductive circuit structures as well as resistive circuit structures including gradient resistive circuit structures having an electrical resistivity profile that varies along the structure length. Further examples include methods in which a non-conductive reactant layer is deposited or patterned, and a second solution is deposited in varying amounts using an additive deposition for reaction with the reactant layer to form controllably conductive structures.
Abstract:
A dielectric waveguide interconnect system has a dielectric waveguide (DWG) a core surrounded by a cladding along the length of the DWG. One or more periodic structures are embedded along the length of the DWG such that the core of the DWG is integral to each of the one or more periodic structures.