Abstract:
A microelectronic device includes a III-N semiconductor layer having a top surface with at least one topological structure in the III-N semiconductor layer. The topological structure may be an opening in the III-N semiconductor layer or a protrusion of the III-N semiconductor layer. The microelectronic device also includes a liner including silicon nitride on the topological structure, contacting the III-N semiconductor layer. The microelectronic device further includes a fill material including silicon nitride on the topological structure on the liner. A top surface of the fill material is planar and parallel to the top surface of the III-N semiconductor layer adjacent to the topological structure.
Abstract:
An integrated circuit includes a PMOS gate structure and a gate structure on adjacent field oxide. An epitaxy hard mask is formed over the gate structure on the field oxide so that the epitaxy hard mask overlaps the semiconductor material in PMOS source/drain region. SiGe semiconductor material is epitaxially formed in the source/drain regions, so that that a top edge of the SiGe semiconductor material at the field oxide does not extend more than one third of a depth of the SiGe in the source/drain region abutting the field oxide. Dielectric spacers on lateral surfaces of the gate structure on the field oxide extend onto the SiGe; at least one third of the SiGe is exposed. Metal silicide covers at least one third of a top surface of the SiGe. A contact has at least half of a bottom of the contact directly contacts the metal silicide on the SiGe.
Abstract:
In an integrated circuit that includes an NMOS logic transistor, an NMOS SRAM transistor, and a resistor, the gate of the SRAM transistor is doped at the same time that the resistor is doped, thereby allowing the gate of the logic transistor to be separately doped without requiring any additional masking steps.
Abstract:
An integrated circuit includes a PMOS gate structure and a gate structure on adjacent field oxide. An epitaxy hard mask is formed over the gate structure on the field oxide so that the epitaxy hard mask overlaps the semiconductor material in PMOS source/drain region. SiGe semiconductor material is epitaxially formed in the source/drain regions, so that that a top edge of the SiGe semiconductor material at the field oxide does not extend more than one third of a depth of the SiGe in the source/drain region abutting the field oxide. Dielectric spacers on lateral surfaces of the gate structure on the field oxide extend onto the SiGe; at least one third of the SiGe is exposed. Metal silicide covers at least one third of a top surface of the SiGe. A contact has at least half of a bottom of the contact directly contacts the metal silicide on the SiGe.
Abstract:
In an integrated circuit that includes an NMOS logic transistor, an NMOS SRAM transistor, and a resistor, the gate of the SRAM transistor is doped at the same time that the resistor is doped, thereby allowing the gate of the logic transistor to be separately doped without requiring any additional masking steps.
Abstract:
In an integrated circuit that includes an NMOS logic transistor, an NMOS SRAM transistor, and a resistor, the gate of the SRAM transistor is doped at the same time that the resistor is doped, thereby allowing the gate of the logic transistor to be separately doped without requiring any additional masking steps.
Abstract:
An integrated circuit having a replacement HiK metal gate transistor and a front end SiCr resistor. The SiCr resistor replaces the conventional polysilicon resistor in front end processing and is integrated into the contact module. The first level of metal interconnect is located above the SiCr resistor. First contacts connect to source/drain regions. Second contacts electrically connect the first level of interconnect to either the SiCr resistor or the metal replacement gate.