Abstract:
The disclosure provides an ICG (integrated clock gating) cell that utilizes a low area and a low power latch. The ICG cell includes a first logic gate that receives an enable signal and generates a latch input. A latch is coupled to the first logic gate and receives the latch input and a clock input. The latch includes a tri-state inverter and an inverting logic gate. The tri-state inverter is activated by a control signal generated by the inverting logic gate. A second logic gate receives the control signal and generates a gated clock.
Abstract:
A flip-flop having first and second shared transistors. The flip-flop including a tri-state inverter and a master latch configured to receive an output of the tri-state inverter. The flip-flop also having a slave latch coupled to the master latch, the slave latch including a slave tri-state inverter. The flip-flop further having an output inverter coupled to receive one of an output of the slave latch and an output of the master latch and configured to generate a flip-flop output. The first shared transistor configured to receive a clock signal and having a drain terminal coupled a first transistor in the tri-state inverter and a second transistor in the slave tri-state inverter. The second shared transistor configured to receive an inverted clock signal and having a drain terminal coupled a third transistor in the tri-state inverter and a fourth transistor in the slave tri-state inverter.
Abstract:
A digital filter for interpolation or decimation and a device incorporating the digital filter is disclosed. The digital filter includes a filter block, a first transformation circuit coupled to the filter block and an input stream coupled to provide input values to a component selected from the filter block and the first transformation circuit. The filter block includes a pair of sub-filters having respective transformed coefficients, the respective transformed coefficients of a first sub-filter of the pair of sub-filters being symmetric and the respective transformed coefficients of a second sub-filter of the pair of sub-filters being anti-symmetric. The first transformation circuit is coupled to perform a first transformation; the filter block and the first transformation circuit together provide suppression of undesired spectral images in final outputs of the digital filter.
Abstract:
A full adder is disclosed that utilizes low area. The full adder includes an exclusive NOR logic circuit. The exclusive NOR logic circuit receives a first input and a second input. A first inverter receives an output of the exclusive NOR logic circuit and generates an exclusive OR output. A carry generation circuit receives the output of the exclusive NOR logic circuit, the exclusive OR output and a third input. The carry generation circuit generates an inverted carry. A second inverter is coupled to the carry generation circuit and generates a carry on receiving the inverted carry. A sum generation circuit receives the output of the exclusive NOR logic circuit, the exclusive OR output and the third input. The sum generation circuit generates an inverted sum. A third inverter is coupled to the sum generation circuit and generates a sum on receiving the inverted sum.
Abstract:
The disclosure provides a flip-flop that utilizes low power as a result of reduced transistor count. The flip-flop includes a tri-state inverter that receives a flip-flop input and a clock input. A master latch is coupled to an output of the tri-state inverter and provides a control signal to the tri-state inverter. The control signal activates the tri-state inverter. A slave latch receives an output of the master latch and the control signal. An output inverter is coupled to an output of the slave latch and generates a flip-flop output.
Abstract:
A multiplier circuit includes a partial product generation circuit, a truncation circuit, and a summation circuit. The partial product generation circuit is configured to generate a plurality of partial products for multiplying two values. The truncation circuit is coupled to the partial product generation circuit. The truncation circuit is configured to shorten at least some of the partial products by removing a least significant bit from the at least some of the partial products. The summation circuit coupled to the truncation circuit. The summation circuit is configured to sum the truncated partial products produced by the truncation circuit.
Abstract:
A digital down converter includes a low resolution mixer, a decimation filter, and a high resolution mixer. The low resolution mixer is configured to receive a digitized radio frequency signal, and apply a first down conversion to the radio frequency signal to produce an intermediate frequency signal. The decimation filter is coupled to the low resolution mixer. The decimation filter is configured to receive the intermediate frequency signal, and reduce a sampling rate of the intermediate frequency signal to produce a decimated intermediate frequency signal. The high resolution mixer is coupled to the decimation filter. The high resolution mixer is configured to receive the decimated intermediate frequency signal, and apply a second down conversion to the decimated intermediate frequency signal to produce a down converted signal.
Abstract:
A multiplier circuit includes a partial product generation circuit, a truncation circuit, and a summation circuit. The partial product generation circuit is configured to generate a plurality of partial products for multiplying two values. The truncation circuit is coupled to the partial product generation circuit. The truncation circuit is configured to shorten at least some of the partial products by removing a least significant bit from the at least some of the partial products. The summation circuit coupled to the truncation circuit. The summation circuit is configured to sum the truncated partial products produced by the truncation circuit.
Abstract:
A digital filter for interpolation or decimation and a device incorporating the digital filter is disclosed. The digital filter includes a filter block, a first transformation circuit coupled to the filter block and an input stream coupled to provide input values to a component selected from the filter block and the first transformation circuit. The filter block includes a pair of sub-filters having respective transformed coefficients, the respective transformed coefficients of a first sub-filter of the pair of sub-filters being symmetric and the respective transformed coefficients of a second sub-filter of the pair of sub-filters being anti-symmetric. The first transformation circuit is coupled to perform a first transformation; the filter block and the first transformation circuit together provide suppression of undesired spectral images in final outputs of the digital filter.
Abstract:
A digital filter for interpolation or decimation and a device incorporating the digital filter is disclosed. The digital filter includes a filter block, a first transformation circuit coupled to the filter block and an input stream coupled to provide input values to a component selected from the filter block and the first transformation circuit. The filter block includes a pair of sub-filters having respective transformed coefficients, the respective transformed coefficients of a first sub-filter of the pair of sub-filters being symmetric and the respective transformed coefficients of a second sub-filter of the pair of sub-filters being anti-symmetric. The first transformation circuit is coupled to perform a first transformation; the filter block and the first transformation circuit together provide suppression of undesired spectral images in final outputs of the digital filter.