Abstract:
A method of graphical manipulation of the trajectory of an aircraft comprises the steps of receiving an indication of a deformation point associated with the trajectory of the aircraft; determining a zone of local modification of the trajectory of the aircraft as a function of the deformation point; computing a modified trajectory and graphically restoring the modified trajectory. A parameter associated with the indication of the deformation point, notably a speed and/or acceleration value (for example of the contact point on the touch-sensitive interface, or else of a cursor), is received or determined. A modified trajectory is computed by selecting a computation algorithm from among a plurality of faster or slower predefined algorithms; the selection being performed as a function of the parameter. Various other developments are described (configurable selection, trajectory modification bounds, processing of an arbitrary deformation point, i.e. one other than a point of the flight plan, etc.).
Abstract:
The system executes services by an application called “server” for at least one application called “client.” A preliminary step establishes for each service a list of calculation parameters that can be varied in a given range, called “adjustable parameters” as well as time and quality of the said service information according to the value of the said parameters. At the request of a client for a given service, the method adjusts the value of the adjustable calculation parameters as a function of a given constraint, the service being executed using the adjusted values of the said parameters.
Abstract:
A method for assisting the navigation of an aircraft comprises: assembly by families of data by a processing unit of predetermined data and acquired data, including meteorological data, the families being predefined, each data value being associated with a time window of validity; formatting the data of the families to associate with each data value a type of graphical representation as text or a scalar, vector, surface, or volume; selection of families of data to be displayed; choice of a display time window for each family of data to be displayed; spatio-temporal discretization of the trajectory; spatio-temporal correlation of the discretized trajectory with each family of data as a function of the time windows of validity, in the display time windows of the family, to extract a sub-assembly from each family of data, by the processing unit; display of the sub-assemblies in a single representation on the same display screen.
Abstract:
A method for calculating a flight plan used by a flight management system of an aircraft in a runway approach phase comprises: loading an initial procedure ending at a first end point not corresponding to a threshold of the runway and a first associated missed approach procedure; determining an additional procedure and a second associated missed approach procedure; concatenating the initial procedure and the additional procedure in order to generate a continuous concatenated flight plan comprising the initial procedure, the first missed approach procedure, the additional procedure and the second missed approach procedure; loading the concatenated flight plan into an active flight plan; selecting a second procedure from a set comprising the first missed approach procedure and the additional procedure; activating the selected second procedure.
Abstract:
A method, system and computer program for providing, on a human-machine interface, data relating to an aspect of the operation of an aircraft and grouped into one and the same area of the interface, the method comprising the following steps. A step of detecting a request to display an aspect of the operation of the aircraft. The method also includes a step of computing a flight situation and generating a consolidated aeroplane situation. A step of associating the elementary data linked to the consolidated aeroplane situation to extract therefrom updated situational data. The method then includes a step of grouping the updated situational data into a plurality of sub-sets to allow display of the data in the display area. Finally the method includes a step of displaying, in the display area, the sub-sets of data.
Abstract:
In the field of the definition of a flight plan for an aircraft, a method is provided for determining an offset lateral trajectory from an initial lateral trajectory comprising a set of initial waypoints. The initial lateral trajectory and the offset lateral trajectory have two junction points in common, namely a point of entry and a point of exit. At least one of the junction points is distinct from the initial waypoints and from the current position of the aircraft. This first junction point can notably be defined so that the flight duration or the flight distance between the first and second junction points corresponds to a defined value.