Abstract:
An imaging system including an imaging device having a field of view and a nonaqueous radiopaque fluid positionable in the field of view, the nonaqueous radiopaque fluid having a radiodensity that is between that of a metallic portion and a non-metallic portion of an object to be imaged by the imaging device.
Abstract:
An imaging system including an imaging device having a field of view, an object positioned in the field of view, the object defining a void, and a nonaqueous radiopaque fluid in the void.
Abstract:
The present disclosure provides an apparatus and method of use thereof for compressive creep testing of materials in the presence of fluids. The apparatus includes a cantilever arm connected on a first end to a cantilever pivot and including a weight holder on a second end; a first platen connected to the cantilever arm via a swivel located between the first end and the second end; a reservoir; and a second platen disposed within the reservoir and positioned to secure a sample between the first platen and the second platen when a force is applied via the weight holder and the first platen to a sample. Electrical properties of the material can be monitored and measured during the compression creep testing.
Abstract:
A reinforced structural component includes a body portion made of a combination of plastic material and chopped fibers. The body portion has a central longitudinal axis and a cross-section orthogonal to the central longitudinal axis, with the cross-section having an outer periphery and an inner core inward of the outer periphery. The body portion has an outer peripheral portion and an inner core portion corresponding to respective longitudinal projections of the outer periphery and inner core. The body portion is configured for being acted upon by a combination of forces causing tension within one or more longitudinal segments of the inner core portion. The reinforced structural component also includes one or more layers of continuous fiber disposed longitudinally within the one or more longitudinal segments, so as to resist tension caused within the one or more longitudinal segments.
Abstract:
A system includes a cell support having a first opening defined therethrough. The first opening is configured to have a first battery cell positioned at least partially therein. The system also includes a first insulator positioned at least partially within the first opening and at least partially around the first battery cell. The first insulator comprises a first solid diamond-like carbon insert that fills a first gap between the first battery cell and the first opening.
Abstract:
A nanotube particle device for two dimensional and three dimensional printing or additive/subtractive manufacturing. The nanotube particle device comprising a nanotube, a particle shooter, a positioning mechanism, and a detection sensor. The particle shooter shoots a particle down the nanotube towards a target, the detection sensor senses the collision of the particle with the target, and the positioning mechanism re-adjusts the positioning of the nanotube based on the results of the collision. A method for aiming the particle shooter and additive/subtractive manufacturing are also disclosed and described.
Abstract:
The present disclosure is directed to a particle shooter system. The particle shooter system comprises a non-carbon topological insulator nanotube defining a bore extending between first and second ends thereof. A particle shooter is operably coupled with the first end of the non-carbon topological insulator nanotube, and configured to transmit a single particle through the bore of the non-carbon topological insulator nanotube. A positioning mechanism is operably coupled with the non-carbon topological insulator nanotube and configured to aim the non-carbon topological insulator nanotube at a target disposed proximal the second end thereof.
Abstract:
A method for manufacturing a component having a spatially graded property includes providing a first layer of particulate matter, the first layer having first material characteristics, and providing a second layer of particulate matter, the second layer having second material characteristics different from the first material characteristics. The method further includes providing an interlayer between the first layer and the second layer and heating the first layer, the second layer, and the interlayer to bond the first layer with the second layer.
Abstract:
A nanotube particle device for two dimensional and three dimensional printing or additive/subtractive manufacturing. The nanotube particle device comprising a nanotube, a particle shooter, a positioning mechanism, and a detection sensor. The particle shooter shoots a particle down the nanotube towards a target, the detection sensor senses the collision of the particle with the target, and the positioning mechanism re-adjusts the positioning of the nanotube based on the results of the collision. A method for aiming the particle shooter and additive/subtractive manufacturing are also disclosed and described.