Abstract:
The present invention relates to a porous carbon material having a co-continuous structure forming portion in which carbon skeletons and voids form continuous structures, respectively and which has a structural period of 0.002 μm to 3 μm, having pores which have an average diameter of 0.01 to 10 nm on a surface thereof, and having a BET specific surface area of 100 m2/g or more.
Abstract:
The present invention provides: a porous carbon material which includes a portion having a continuous porous structure and a portion having no continuous porous structure and has even pore size and matrix size in the material center part thereof, thereby being easy to composite with other materials and being able to be used in various applications; a porous-carbon-material precursor; a process for producing the porous-carbon-material precursor; and a process for producing the porous carbon material. A porous carbon material of the invention is a porous carbon material which includes a portion having a continuous porous structure and a portion having substantially no continuous porous structure, in which the portion having the continuous porous structure has a structural period of 0.002 to 1 μm.
Abstract:
The present invention provides an electrode material for an electrochemical capacitor having high surface utilization efficiency, composed of a porous carbon material capable of further contributing to higher electrostatic capacitance of the electrochemical capacitor and to development of high rate characteristics; the porous carbon material having a co-continuous structural portion in which a carbon skeleton and voids form respective continuous structures, the co-continuous structural portion having a structural period of 0.002 μm to 20 μm.
Abstract:
Provided is an electrode material which has a co-continuous porous structure configured from a carbon skeleton and voids and which, by providing a large surface area, has excellent electrical conductivity, thermal conductivity, etc. This electrode material includes a porous carbon material having a co-continuous structure portion in which a carbon skeleton and voids form a continuous structure, and in the porous carbon material, the specific surface area measured by the BET method is 1 to 4500 m2/g, and the pore volume measured by the BJH method is 0.01 to 2.0 cm3/g.
Abstract:
A carbon material having a continuous porous structure oriented to the stretching axis is provided, which carbon material can be used as a structural material excellent in interfacial adhesion. The porous carbon material has a continuous porous structure in at least a portion thereof, in which the continuous porous structure has an orientation degree measured by a small-angle X-ray scattering method or an X-ray CT method of 1.10 or more.
Abstract:
The present invention relates to a particulate porous carbon material having a continuous porous structure, the particulate porous carbon material satisfying the following A to C: A: branch portions forming the continuous porous structure have an aspect ratio of 3 or higher; B: the branch portions have aggregated through joints interposed therebetween, the number of the aggregated branch portions (N) being 3 or larger; C: a ratio of the number of the aggregated branch portions (N) to the number of the joints (n), N/n, is 1.2 or larger.
Abstract:
Provided is an electrode material which has a co-continuous porous structure configured from a carbon skeleton and voids and which, by providing a large surface area, has excellent electrical conductivity, thermal conductivity, etc. This electrode material includes a porous carbon material having a co-continuous structure portion in which a carbon skeleton and voids form a continuous structure, and in the porous carbon material, the specific surface area measured by the BET method is 1 to 4500 m2/g, and the pore volume measured by the BJH method is 0.01 to 2.0 cm3/g.
Abstract:
The present invention provides an electrode material for metal-air batteries which has a homogeneous co-continuous structure due to a carbon skeleton and voids and is excellent in terms of permeability to and diffusibility of ions, oxygen, electrolytes, and electrolytic solutions and which, due to the formation of the carbon network, can rapidly diffuse the heat generated by battery reactions and has satisfactory electrical conductivity. The electrode material for metal-air batteries includes a porous carbon material having a co-continuous structure portion in which a skeleton constituted of carbon and voids form a co-continuous structure and which has a structural period, as calculated by X-ray scattering method or X-ray CT method, of 0.002-10 μm.
Abstract:
A carbon material having a continuous porous structure oriented to the stretching axis is provided, which carbon material can be used as a structural material excellent in interfacial adhesion. The porous carbon material has a continuous porous structure in at least a portion thereof, in which the continuous porous structure has an orientation degree measured by a small-angle X-ray scattering method or an X-ray CT method of 1.10 or more.
Abstract:
The present invention provides: a porous carbon material which includes a portion having a continuous porous structure and a portion having no continuous porous structure and has even pore size and matrix size in the material center part thereof, thereby being easy to composite with other materials and being able to be used in various applications; a porous-carbon-material precursor; a process for producing the porous-carbon-material precursor; and a process for producing the porous carbon material. A porous carbon material of the invention is a porous carbon material which includes a portion having a continuous porous structure and a portion having substantially no continuous porous structure, in which the portion having the continuous porous structure has a structural period of 0.002 to 1 μm.