Abstract:
There is provided a solid oxide fuel cell stack including a ceramic interconnector that has good electrical conductivity and oxide ion insulating property, that is, power generation efficiency. The solid oxide fuel cell stack includes at least: a plurality of power generation elements, each of which including a fuel electrode, a solid electrolyte, and an air electrode stacked in that order; and an interconnector that electrically connects the air electrode in one of adjacent power generation elements in the plurality of power generation elements to the fuel electrode in the other power generation element, the plurality of power generation elements being connected in series, wherein the interconnector is formed of formula (1): SraLabTi1-c-dNbcFedO3-δ formula (1) wherein a, b, c, and d are a positive real number that satisfies 0.1≦a≦0.8, 0.1≦b≦0.8, 0.05≦c≦0.2, and 0.2≦d≦0.5.
Abstract:
There is provided a solid oxide fuel cell stack including an interconnector that has excellent electrical conductivity, gas sealing property, and adhesion to a solid electrolyte. The solid oxide fuel cell stack includes a plurality of power generation elements, each of which including at least a fuel electrode, a solid electrolyte, and an air electrode stacked in that order; and an interconnector that electrically connects the air electrode in one of adjacent power generation elements in the plurality of the power generation elements to the fuel electrode in the other power generation element, the plurality of power generation elements being connected in series to each other, wherein an intermediate layer having a porosity of not more than 1% and an electrical conductivity of not less than 0.05 S/cm is provided between the interconnector and the fuel electrode in the other power generation element.
Abstract:
To provide a method for manufacturing SOFC, capable of preventing breakage of fuel cell electrodes, and of securing an electrical connection between fuel cells and a current collector. Step for forming electrode protective layers 152 on electrodes formed on fuel cells 16, modularization step for forming a cell array, and attaching step for attaching a current collector 82 to the cell array, wherein current collector 82 is a metal plate on which attaching holes 84 are formed for the insertion of fuel cells 16, elastic pieces 84a are formed at each attaching hole 84, fuel cells 16 are inserted into attaching holes 84, and current collector 82 is attached to the cell array by the elastic force; and protective layer 152 is constituted to prevent damage to electrodes caused by contact with elastic pieces.
Abstract:
Provided is a solid oxide fuel cell unit comprising an insulating support, and a power generation element comprising, at least, a fuel electrode, an electrolyte and an air electrode, which are sequentially laminated one another, the power generation element being provided on the insulating support, wherein an exposed insulating support portion, an exposed fuel electrode portion, and an exposed electrolyte portion are provided in an fuel electrode cell end portion.
Abstract:
Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and further has a strontium element concentration of 0.02 mass % to 1 mass % both inclusive in terms of SrO based on the mass of the forsterite.
Abstract:
Provided is a solid oxide fuel cell which includes a fuel electrode, a solid electrolyte, and an air electrode, each being sequentially laminated on the surface of a porous support. The porous support comprises forsterite and a nickel element. Ni and/or NiO fine particles are exposed on a surface of a sintered compact of the forsterite constituting the porous support.
Abstract:
The solid oxide fuel cell apparatus of the present invention comprises: multiple fuel cells mutually electrically connected to each other; an outside cylindrical member for housing the multiple fuel cells; an oxidant gas supply flow path for supplying oxidant gas to the fuel cells; a fuel gas supply flow path for supplying fuel gas to the fuel cells; a reforming portion for producing fuel gas by reforming raw fuel gas using steam; an evaporating portion for producing steam supplied to the reforming portion; and a fuel gas supply pipe for supplying water evaporated by the evaporating portion; wherein the evaporating portion comprises a sloped plate for dispersing water supplied from the fuel gas supply pipe over the entire evaporating portion using capillary action.
Abstract:
A solid oxide fuel cell stack includes a support, a plurality of power generation elements connected in series, each including a fuel electrode, a solid electrolyte, and an air electrode stacked in that order on the support, and an interconnector electrically connecting an air electrode in one of the two adjacent power generation elements to a fuel electrode in the other power generation element. A solid electrolyte for one of the power generation elements is provided on the downside of the interconnector provided on the downside of the air electrode in the one power generation element so that the solid electrolyte is joined to the interconnector, and a solid electrolyte for the other power generation element is provided on the upper side of the interconnector provided on the upper side of the fuel electrode for the other power generation element so that the solid electrolyte is joined to the interconnector.
Abstract:
Provided is a solid oxide fuel cell stack including: a porous insulating support having a gas permeability and provided with a gas flow path therein; and a plurality of power generating elements which are provided on the insulating support and each of which includes an inner electrode, an electrolyte. An outer electrode, the inner electrode, the electrolyte and the outer electrode are sequentially laminated one another, and the inner electrode of one of adjacent two of the plurality of power generating elements is electrically connected to the outer electrode of the other of the adjacent two of the plurality of power generating elements via an interconnector, so that the plurality of power generating elements are connected in series, wherein the insulating support comprises forsterite, the insulating support contains a Mg element and a Si element with a concentration of 90 mass % or more in total in terms of MgO and SiO2, at least in a surface region on the power generating elements side, and the interconnector comprises titanium-based perovskite type oxide represented by (A,B)(Ti,C)O3-δ.
Abstract:
To provide a method for manufacturing a solid oxide fuel cell apparatus. The present invention is a method for manufacturing a fuel cell apparatus, including an adhesive application step for adhering ceramic adhesive to joining portions so as to constitute an airtight flow path for guiding fuel, and a drying and hardening step for drying and hardening ceramic adhesive, whereby the drying and hardening step has: a workable hardening step for drying the ceramic adhesive at a predetermined first temperature to a state whereby the next manufacturing step can be implemented, and a solvent elimination and hardening step further hardens ceramic adhesive hardened in each of the workable hardening steps by raising it to a second temperature higher than the first temperature and approximately equal to the temperature of the fuel cells during an electrical generation operation.