摘要:
A process of manufacturing optically active (S)-1,2-diols, wherein (R)-1,2-diols represented by the general formula [I] ##STR1## (where: R represents a substituted or unsubstituted alkyl group, alkenyl group, aryl group or aralkyl group) or a mixture of diols of the general formula [I] and (S)-1,2-diols represented by the general formula [II] ##STR2## (Where: R represents the same as above) having an opposite configuration to the general formula [I] is subjected to the action of a microorganism capable of selectively metabolizing the diols of the general formula [I], or capable of converting the diols of the general formula [I] into the diols of the general formula [II], or having the both capabilities, and the formed and accumulated (S)-1,2-diols of the general formula [II] is collected. According to the present invention, optically active (S)-1,2-diols can be produced commercially and advantageously.
摘要:
A 3-phenylthiomethylstyrene derivative having the general formula (1): ##STR1## or salt thereof with a base, when X is hydroxyl group, R.sup.1 is hydrogen atom or R.sup.2 is hydrogen atom, a process for preparing the 3-phenylthiomethylstyrene derivative (1), and an antiallergic agent and a tyrosinekinase inhibiting agent containing the 3-phenylthiomethylstyrene derivative (1) as an effective component. The compound (1) of the present invention is a useful intermediate for preparing various organic compounds, and has excellent antiallergic and tyrosinekinase inhibiting activities.
摘要:
A process for preparing optically active (R)-3-chloro-1,2-propanediol, which comprises subjecting (R,S)-3-chloro-1,2-propanediol to the reaction of a microorganism belonging to genus Serratia in a reaction mixture, and then collecting the residual (R)-3-chloro-1,2-propanediol. According to the process of the present invention, (R)-3-chloro-1,2-propanediol can be efficiently prepared starting from low cost (R,S)-3-chloro-1,2-propanediol.
摘要:
A semiconductor wafer is placed in a reaction chamber and a cleaning gas is introduced into the reaction chamber. Then, the cleaning gas is excited by irradiation with light rays or heating to produce reactive radicals and a natural oxide film formed on the semiconductor wafer is first removed by the reactive radicals to expose a raw semiconductor wafer surface and then the exposed raw wafer surface is etched by the reactive radicals. Since the natural oxide film is first removed, the exposed raw surface of semiconductor wafer can be etched uniformly over the whole surface, and therefore the highly flat and perfectly crystalline surface can be obtained. It is preferable to introduce a chlorine fluoride series gas such as chlorine trifluoride gas in the cleaning gas. Then, the natural oxide film can be effectively removed by hydrogen fluorine radicals which are produced by irradiating the chloride fluoride series gas with ultraviolet rays.
摘要:
A hydroxystyrene derivative represented by the formula (I): ##STR1## wherein when R.sup.1 and R.sup.2 : phenyl group, benzyl group or phenethyl group, or R.sup.1 : R.sup.5 O- (R.sup.5 : H, a C.sub.1 to C.sub.5 alkyl group or benzyl group) and R.sup.2 : benzyl group or PhSCH.sub.2, R.sup.3 and R.sup.4 are taken together to represent --CONH--CS--S--, ##STR2## (X.sup.1 : H, a halogen, methyl group, ethyl group, R.sup.7 O-- (R.sup.7 : methyl or ethyl group), nitro group, aminosulfonyl group or amino group, m.sup.1 : 1 or 2), pyridyl group, furyl group or thienyl group, n.sup.1 : an integer of 0 to 3); when R.sup.1 and R.sup.2 : phenyl group, benzyl group or phenethyl group, or R.sup.1 : R.sup.5 O-- (R.sup.5 : as defined above) and R.sup.2 : benzyl group, R.sup.3 : cyano group and R.sup.4 : a carbamoyl group, or R.sup.3 and R.sup.4 are taken together to represent --CO--Y--CH.sub.2 CH.sub.2 -- (Y: O or --NH--) or ##STR3## and when R.sup.1 and R.sup.2 : a C.sub.1 to C.sub.3 alkyl group, R.sup.3 and R.sup.4 are taken together to represent ##STR4## (n.sup.1, R.sup.6 : as defined above), or a salt thereof. The hydroxystyrene derivative or a salt thereof is a compound which is useful as an active ingredient of an antiallergic agent, a 5-lipoxygenase inhibiting agent, an antibacterial agent, a tyrosine kinase inhibiting agent, an ultraviolet absorber or a reverse transcriptase inhibiting agent, and also is useful as an intermediate for preparing various organic compounds.