Abstract:
Disclosed is a method and apparatus for computation and processing of an image for image matching. The apparatus here is configured to pre-process plurality of images for creating an image template. Next, the test image is extracted and pre-processed for assessing the degree of match between the test image components and the image components of the images in the image template, based a position based matching score, a feature based matching score or both.
Abstract:
A processor implemented system and method for identification of an activity performed by a subject based on sensor data analysis is described herein. In an implementation, the method includes capturing movements of the subject in real-time using a sensing device. At least one action associated with the subject is ascertained from a predefined set of actions. From the predefined set of actions, a plurality of actions can collectively form at least one activity. The ascertaining is based on captured movements of the subject and at least one predefined action rule. The at least one action rule is based on context-free grammar (CFG) and is indicative of a sequence of actions for occurrence of the at least one activity. Further, a current activity performed by the subject is dynamically determined, based on the at least one action and an immediately preceding activity, using a non-deterministic push-down automata (NPDA) state machine.
Abstract:
Disclosed is a system and method for detecting a human in an image, and a corresponding activity. The image is captured, wherein the image comprises a plurality of pixels having gray scale information and a depth information. The image is segmented into a plurality of segments based upon the depth information. A connected component analysis is performed on a segment in order to segregate the one or more objects into noisy objects and candidate objects, the noisy objects are eliminated from the segment. A plurality of features are extracted from the candidate objects, and are evaluated using a Hidden Markov Model (HMM) model in order to determine the candidate objects as one of the human or non-human. The corresponding activity associated with the human is detected based on a depth value associated with each pixel corresponding to the candidate object in the image.
Abstract:
A system and method for a real-time prognosis of a vehicle comprising a personal communication device comprising an arbitrarily oriented three-axis accelerometer configured to capture a pitch motion and/or roll motion of the vehicle and an onboard diagnostics system communicably connected with the personal communication device enabling bi-directional communication. The personal communication device comprising a processor configured for geometric mapping of a three dimensional Cartesian coordinate of the three-axis accelerometer with the vehicle. The processor virtually orients the coordinates of three-axis accelerometer to coincide with the coordinates of the vehicle. The arbitrarily oriented three-axis accelerometer is configured to capture a road condition and a driver behaviour using a sampling rate between 4 Hertz (Hz) to 10 Hertz (Hz). The system for the real-time prognosis of the vehicle, wherein the real-time prognosis utilizes at least one predictive analysis model to determine real-time prognosis for the said vehicle.
Abstract:
A multi-dimensional sensor data analysis system and method is provided. The multi-dimensional sensor data analysis system receives indoor and outdoor location, online and physical activity, online and physical proximity and additional a plurality of inputs (specific to a user), for example, surrounding of the subject, physiological parameters of the subject and recent social status of the subject, both online and offline. The multi-dimensional sensor data analysis system processes these inputs along with the knowledge of past behavior and traditional parameters of location, proximity and activity by performing a multi-dimensional sensor data analysis fusion technique, producing one or more outputs, for example, predicting or determining a human behaviour to a given stimuli.
Abstract:
A method and system has been provided for recommending features for developing an IoT analytics application. The method follows a deep like architecture. It comprises of three distinct layers. First layer is for input signal processing and other two layers are for feature reduction. The time domain, frequency domain and time-frequency domain features are extracted from the input signal. The invention uses multiple feature selection methods so that the union of the recommended features by these feature selection methods is significantly lesser than the initial set of features. The best feature combination is recommended using an exhaustive search.
Abstract:
The present disclosure relates to a system and a method for detection of touching characters in a media, characterized by segmentation of adjoining character spaces. In the very first step, an aspect ratio is calculated for each connected component. A candidate touching position of each character is determined by calculating a threshold aspect ratio for each character. Further, a candidate cut column is determined based on a relation between column pixel densities and corresponding length thereof the column in order to segment the touching characters at the candidate cut column.
Abstract:
Disclosed is a method and system for automatic algorithm selection for image processing. The invention discloses the method and system for automatically selecting the correct algorithm(s) for a varying requirement of the image for processing. The selection of algorithm is completely automatic and guided by a plurality of machine learning approaches. The system here is configured to pre-process plurality of images for creating a training data. Next, the test image is extracted, pre-processed and matched for assessing the best possible match of algorithm for processing.
Abstract:
A system and method for identifying an unknown person based on a static posture of the unknown person is described. The method includes receiving data of N skeleton joints of the unknown person from a skeleton recording device. The method further includes identifying the static posture of the unknown person. The method includes dividing a skeleton structure of the unknown person in a plurality of body parts based on joint types of the skeleton structure. In addition, the method includes extracting feature vectors for each of the joint type from each of the plurality of body parts. The method further includes identifying the unknown person based on comparison of the feature vectors for the unknown person with one of a constrained feature dataset and an unconstrained feature dataset for a plurality of known persons.
Abstract:
A method and system is provided for context based splitting of a broadcast content stream and transmission of a relevant broadcast content out of said broadcast content stream to at least one edge device over a home area network for consumption. Particularly, the invention provides a method and system for obtaining context of the edge device and corresponding device owner; comparing the said obtained context with the broadcast content stream; finding and splitting relevant broadcast content out of the broadcast content stream according to the context of said edge device; and transmitting said relevant broadcast content to said edge device for future consumption.