摘要:
A circuit for speeding up the pre-programming of floating gate storage transistors such as FLASH EPROMS, and particularly speeding up the pre-programming of a block or array of floating gate storage transistors includes a controllable voltage source that supplies gate programming potential across the control gate and source of the FLASH EPROM transistor cells to be programmed. A control circuit is provided that controls the voltage source to vary the gate programming potential during a programming interval as a function of time in order to decrease the time required for a given amount of charge movement to program the selected floating gate transistors. The wordline voltages are varied, while the source voltage is held constant. By starting at a lower wordline voltage, and increasing during the programming interval to a high wordline voltage, the programming speed is increased, and the high final turn-on threshold voltage for the programmed floating gate storage transistors is achieved. In addition, in order to speed up pre-programming, a programming potential is applied to four wordlines in parallel during a single programming interval. Further, the load on cells being programmed is adjusted to improve programming speed.
摘要:
Contactless flash EPROM cell and array designs, and methods for fabricating the same result in dense, segmentable flash EPROM chips. Also, an extended floating gate structure, and method for manufacturing the extended floating gate allow for higher capacitive coupling ratios in flash EPROM circuitry with very small design rules. The floating gates are extended in a symmetrical fashion in a drain-source-drain architecture, so that each pair of columns of cells has a floating gate which is extended in opposite directions from one another. This allows one to take advantage of the space on the cell normally consumed by the isolation regions, to extend the floating gates without increasing the layouts of the cells. Also, an easily scalable design is based on establishing conductive spacers on the sides of floating gate deposition layers which are used for self-alignment of the source and drain. According to this structure, a floating gate deposition is first laid down and used for establishing self-aligned source and drain diffusion regions. After deposition of the source and drain, conductive spacers are deposited on the sides of the first floating gate structure. These conductive spacers can be deposited in a symmetrical fashion, and are easily scalable to large scale arrays of flash EPROM designs.
摘要:
A circuit for speeding up the pre-programming of floating gate storage transistors such as FLASH EPROMS, and particularly speeding up the pre-programming of a block or array of floating gate storage transistors includes a controllable voltage source that supplies gate programming potential across the control gate and source of the FLASH EPROM transistor cells to be programmed. A control circuit is provided that controls the voltage source to vary the gate programming potential during a programming interval as a function of time in order to decrease the time required for a given amount of charge movement to program the selected floating gate transistors. The wordline voltages are varied, while the source voltage is held constant. By starting at a lower wordline voltage, and increasing during the programming interval to a high wordline voltage, the programming speed is increased, and the high final turn-on threshold voltage for the programmed floating gate storage transistors is achieved. In addition, in order to speed up pre-programming, a programming potential is applied to four wordlines in parallel during a single programming interval. Further, the load on cells being programmed is adjusted to improve programming speed.
摘要:
A circuit for speeding up the pre-programming of floating gate storage transistors such as FLASH EPROMS, and particularly speeding up the pre-programming of a block or array of floating gate storage transistors includes a controllable voltage source that supplies gate programming potential across the control gate and source of the FLASH EPROM transistor cells to be programmed. A control circuit is provided that controls the voltage source to vary the gate programming potential during a programming interval as a function of time in order to decrease the time required for a given amount of charge movement to program the selected floating gate transistors. The wordline voltages are varied, while the source voltage is held constant. By starting at a lower wordline voltage, and increasing during the programming interval to a high wordline voltage, the programming speed is increased, and the high final turn-on threshold voltage for the programmed floating gate storage transistors is achieved. In addition, in order to speed up pre-programming, a programming potential is applied to four wordlines in parallel during a single programming interval. Further, the load on cells being programmed is adjusted to improve programming speed.
摘要:
Contactless flash EPROM cell and array designs, and methods for fabricating the same result in a dense, segmentable flash EPROM chip. The flash EPROM cell is based on a drain-source-drain configuration, in which the single source diffusion is shared by two columns of transistors. The module includes a memory array having at least M rows and 2N columns of flash EPROM cells. M word lines, each coupled to the flash EPROM cells in one of the M rows of the flash EPROM cells, and N global bit lines are included. Data in and out circuitry is coupled to the N global bit lines which provide for reading and writing data in the memory array. Selector circuitry, coupled to the 2N columns of flash EPROM cells, and to the N global bit lines, provides for selective connection of two columns of the 2N columns to each of the N global bit lines so that access to the 2N columns of flash EPROM cells by the data in and out circuitry is provided across N global bit lines. The semiconductor substrate has a first conductivity type, a first well in the substrate of a second conductivity type, and a second well of the first conductivity type in the first well. The flash EPROM cells are made in the second well to allow application of a negative potential to at least one of the source and drain during an operation to charge the floating gate in the cells.
摘要:
A circuit is provided for supplying a negative high voltage to an integrated circuit from a high positive voltage source V.sub.PP. The negative voltage is applied to a plurality of FLASH electrically erasable programmable read only memory (EPROM) cells. The circuit includes an oscillator coupled to a voltage converter which provides a periodic signal. The periodic signal is coupled to a charge pump including three P-channel type transistors to produce the negative voltage. The source and drain of the first transistor is coupled to the periodic signal. The second transistor's gate and drain is coupled to a reference ground potential with the source coupled to the first transistor's gate. Finally, the third transistor's drain and gate is coupled to the first transistor's gate and the third transistor's source outputs negative voltage to floating gates of the plurality of FLASH EPROM cells during an erase operation. Further, the negative voltage generated is relatively precise, so no regulation is required.
摘要:
A FLASH EPROM device includes a memory array organized into a plurality of blocks of memory cells. An energizing circuit applies energizing voltages to the blocks of memory cells to read and program addressed cells, and to erase selected blocks or the whole memory array. An erase verify circuit separately verifies erasure of blocks in the plurality of block memory cells. Control logic controls the energizing circuit to re-erase blocks which fail erase verify. The control logic includes a plurality of block erase flags which correspond to respective blocks of memory cells in the array. The erase verify is responsive to the block erase flags to verify only those blocks having a set block erase flag. If the block passes erase verify, then the block erase flag is reset. Only those blocks having a set block erase flag after the erase verify operation are re-erased. To support this operation, the circuit also includes the capability of erasing only a block of the memory array at a time.
摘要:
An integrated circuit chip suitable for use in either a single chip packaged configuration or a multi-chip packaged configuration is disclosed. The chip has a conventional memory circuit portion and a control circuit portion. In operation as a single chip packaged configuration, the control circuit portion is inactive. In a multi-chip packaged configuration, the control circuit serves to prolong the activation of the currently addressed memory chip, while delaying the activation of the memory chip which is to be addressed in the next memory address cycle.
摘要:
A charge pump circuit which generates an output voltage at a selected level, but variations in the current supplied to the charge pump are limited, and variations in the output current generated by the charge pump are limited. The charge pump circuit is coupled to a power supply which has a supply voltage which varies over a specified range. It includes a first charge pump that generates a reference voltage higher than the supply voltage in response to the supply voltage. A circuit, coupled to the first charge pump and responsive to the reference voltage generates a regulated supply voltage. A second charge pump generates a controlled output voltage in response to the regulated supply voltage. The regulated supply voltage is used by pump clock drivers and as a pump reference supply for the second charge pump.
摘要:
A FLASH EPROM device includes a memory array organized into a plurality of blocks of memory cells. An energizing circuit applies energizing voltages to the blocks of memory cells to read and program addressed cells, and to erase selected blocks or the whole memory array. An erase verify circuit separately verifies erasure of blocks in the plurality of block memory cells. Control logic controls the energizing circuit to re-erase blocks which fail erase verify. The control logic includes a plurality of block erase flags which correspond to respective blocks of memory cells in the array. The erase verify is responsive to the block erase flags to verify only those blocks having a set block erase flag. If the block passes erase verify, then the block erase flag is reset. Only those blocks having a set block erase flag after the erase verify operation are re-erased. To support this operation, the circuit also includes the capability of erasing only a block of the memory array at a time.