摘要:
There is disclosed a metal particle-dispersed composite oxide comprising a matrix material containing a composite oxide comprising a non-reducible metal oxide and an easily reducible metal oxide, the composite oxide containing 0.01 to 0.25 mol % of at least one additive metal selected from Al, Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si, surface metal particles precipitated on an outer surface of the matrix material containing the composite oxide, and inner metal particles precipitated on an inner surface of the matrix material containing the composite oxide.
摘要:
A high-frequency magnetic material includes: metal particles of one of Fe and Co or alloy particles based on at least one of Fe and Co; and an oxide phase containing a matrix phase and a metal oxide having a larger valence than the matrix phase. The matrix phase contains a non-reducible metal oxide and the metal oxide having a larger valence than the matrix phase forms a solid solution with the matrix phase.
摘要:
The invention provides a compact and thin antenna device capable of carrying out highly efficient transmission and reception. The antenna device includes an antenna substrate and an antenna arranged directly or in the vicinity of the main face of the antenna substrate. The antenna substrate comprises a plurality of insulating layers mutually layered and bonded, and a plurality of magnetic particles arranged in bonded interfaces of the insulating layers and being embedded in both of the insulating layers of the bonded interfaces.
摘要:
An inorganic solid electrolytic rechargeable battery having positive and negative electrodes and an inorganic electrolyte interposed therebetween is provided. The positive and negative electrodes each contain an active material layer and a current collector layer. The positive electrode collector layer or the negative electrode collector layer is a conductive metal oxide layer. The negative electrode active material layer contains lithium metal or lithium alloys. This negative active layer may optionally be made of a material which provides an operation voltage potential of the negative electrode to be more noble than 1.0 V with respect to the potential of a metallic lithium.
摘要:
An inorganic solid electrolytic rechargeable battery capable of offering excellent battery characteristics is disclosed. The battery has positive and negative electrodes and an inorganic electrolyte interposed therebetween. The positive and negative electrodes are each made up of an active material layer and a current collector layer. The positive electrode collector layer or the negative electrode collector layer is a conductive metal oxide layer. The negative electrode active material layer is made of lithium metals or lithium alloys. This negative active layer may alternatively be made of a material which causes an operation voltage potential of the negative electrode to become more noble than 1.0 V with respect to the potential of a metallic lithium. A complexity-reduced fabrication method of the rechargeable battery is also disclosed.
摘要:
An inorganic solid electrolytic rechargeable battery capable of offering excellent battery characteristics is disclosed. The battery has positive and negative electrodes and an inorganic electrolyte interposed therebetween. The positive and negative electrodes are each made up of an active material layer and a current collector layer. The positive electrode collector layer or the negative electrode collector layer is a conductive metal oxide layer. The negative electrode active material layer is made of lithium metals or lithium alloys. This negative active layer may alternatively be made of a material which causes an operation voltage potential of the negative electrode to become more noble than 1.0 V with respect to the potential of a metallic lithium. A complexity-reduced fabrication method of the rechargeable battery is also disclosed.
摘要:
An optical fiber twisting apparatus that prevents line distortion in an optical fiber undergoing a drawing process and provides a consistent coating on a bare optical fiber. This optical fiber twisting apparatus includes a twist roller apparatus that having a twist roller that, by imparting a twist to an optical fiber, imparts a twist to a molten portion of an optical fiber preform positioned on an upstream side of the optical fiber, and a support portion that supports the twist roller. The accuracy of the outer circumference of the twist roller when the twist roller is forming a part of the twist roller apparatus is 15 μm or less.
摘要:
A method of measuring polarization mode dispersion of an optical fiber includes inputting linearly polarized pulse light into an optical fiber, separating the input linearly polarized light from backscattered light from the optical fiber, detecting a light intensity of the backscattered light as time series data since the generation of the pulse light, calculating a fluctuation of the detected light intensity in the time series data, and evaluating polarization mode dispersion in the optical fiber, based on the calculated fluctuation value.
摘要:
A drawing method for a bare optical fiber, comprises the steps of: melting an optical fiber preform using a heating device and drawing the bare optical fiber; and naturally cooling down the bare optical fiber or forcibly cooling down the bare optical fiber by a cooling device after the heating and melting step, wherein a temperature history during the drawing the optical fiber preform to obtain the bare optical fiber in the heating device satisfies a relational expression: T≦−0.01X+12 where a time period when the heated and molten portion of the optical fiber preform heated and molten by the heating device reaches 1800° C. or higher is T (min) and a OH group concentration in a cladding layer of the optical fiber preform is X (wtppm).
摘要:
Under condition that a non-circularity ratio is 5% or lower and a thermal expansion coefficient of a glass which forms the core is α1 and a thermal expansion of a glass which forms the cladding is α2, the difference of coefficients is controlled such that a formula −2.5×10−7/° C.≦α1 −α2≦1.0×10−7/° C. is satisfied so as to maintain a polarization mode dispersion to be 0.03 ps/km0.5 or lower. The difference of coefficients is further controlled such that a formula −1.5×10−7/° C.≦α1−α2≦0/° C. is satisfied so as to maintain a polarization mode dispersion to be 0.015 ps/km0.5 or lower. By doing this, birefringence is reduced by adjusting the thermal expansion coefficient in a core and a cladding; thus providing an optical fiber, and an optical transmission path using the optical fiber, having preferable PMD for high speed transmission.