摘要:
An object of the present invention is to provide a charged-device model (CDM) electrostatic discharge (ESD) protection circuit for an integrated circuit (IC). The ESD protection circuit comprises an ESD clamp device and a functional component. The ESD clamp device is coupled to a pad and a substrate having a first conductivity type. Under normal power operation, the ESD clamp device is closed. The functional component is formed on the substrate and coupled to the pad. The functional component has a first well having the first conductivity type and an isolating region having a second conductivity type for isolating the first well from the substrate. Under normal power operation, the functional component transmits signals between the IC and an external linkage. During an CDM ESD event, the CDM charges accumulated in the substrate are discharged via the ESD clamp circuit. Hence, the functional component is protected.
摘要:
An ESD protection circuit is connected to an integrated circuit to dissipate an electrostatic charge from an ESD source placed in contact with two terminals of the integrated circuit to prevent damage to the integrated circuits. The ESD protection circuit has a ESD shunting circuit for shunting the electrostatic charge from integrated circuit. The ESD shunting circuit has a first port connected to one terminal of the integrated circuit, a second port connected to another terminal of the integrated circuit, and a third port. The ESD protection circuit additionally has an ESD detection circuit. The ESD detection circuit has a first input port connected to the one terminal of the integrated circuit, a second input port connected to the other terminal of the integrated circuit, and an output port connected to the third port of the ESD shunting circuit. When the ESD detection circuit detects the presence of the electrostatic charge from the ESD source, the ESD detection circuit generates an excess voltage at the third port that will damage the ESD shunting circuit. Finally The ESD protection circuit has a voltage clamping circuit connected between the third port of the ESD shunting circuit and one of the terminals of the integrated circuit to prevent the generation of the excess voltage at the third port of the ESD shunting circuit.
摘要:
In this invention, a new whole-chip ESD protection scheme with the ESD buses has been proposed to solve the ESD protection issue of the CMOS IC having a large number of separated power lines. Multiple ESD buses, which are formed by the wide metal lines, have been added into the CMOS IC having a large number of separated power lines. The bi-directional ESD-connection cells are connected between the separated power lines and the ESD buses, but not between the separated power lines. The ESD current on the CMOS IC with more separated power lines are all conducted into the ESD buses, therefore the ESD current can be conducted by the ESD buses away from the internal circuits and quickly discharged through the designed ESD protection devices to ground. By using this new whole-chip ESD protection scheme with the ESD buses, the CMOS IC having more separated power lines can be still safely protected against ESD damages.
摘要:
CMOS VLSI chips with pin counts greater than 100 often have multiple power pins to supply sufficient current for circuit operations. In mixed voltage ICs there are separated power pins with different power supplies for specified power operations, and in these ICs the power supplies for the digital and analog circuits are often separated due to noise considerations. In such ICs with separated power pins, the interface circuits between the circuits with different power pins are vulnerable to ESD (electrostatic discharge) stress. Even though there are suitable ESD protection circuits around the input and output pins of the IC, unexpected ESD damage still happens to the interface circuits between the circuits with different power pins, so that a whole-chip ESD protection arrangement using bi-directional SCRs is provided to protect the CMOS ICs against ESD damage. The bi-directional SCRs are placed between the separated power lines of the CMOS IC to provide ESD current discharging paths between the separated power lines. Thus, the vulnerable internal circuits and interface circuits between the different power pins are rendered remote from the ESD damage. The present ESD protection arrangement can be applied to chips having multiple or mixed-voltage power pins.
摘要:
The cascode LVTSCR includes two or more SCRs (silicon controlled rectifiers). Each SCR has an anode, a control gate, and a cathode. The SCRs are cascoded in series by coupling the control gates of same type SCRs in common and coupling the cathode of one SCR to the anode of next SCR in series. The holding voltage of the cascode LVTSCR can be designed to be greater than VDD voltage level of the IC. Therefore, the cascode LVTSCR has no latchup problem in the CMOS IC's. The electrostatic discharge (ESD) protection circuit in the present invention includes a cascode LVTSCR (low-voltage triggering silicon controlled rectifier) with an anode and a cathode coupled between power supplies, and a detecting circuit coupled between the power supplies for detecting an electrostatic charge to trigger the control gates of the cascode LVTSCR for dissipating the electrostatic discharge. The ESD protection circuit including the cascode LVTSCR can sustain high ESD stress but without causing the latchup problem in the CMOS IC's.
摘要:
An electrostatic discharge (ESD) circuit for protecting a semiconductor integrated circuit (IC) device is disclosed. One ESD circuit is located between each I/O buffering pad that connects to one lead pin and the internal circuitry of IC. The ESD circuit is connected to both power terminals. The ESD circuit comprises first and second low-voltage-trigger SCRs (LVTSCRs), each having an anode, a cathode, an anode gate and a cathode gate. The anode and anode gate of the first SCR are connected to a first power terminal, the cathode of the first SCR is connected to its I/O buffering pad, and the cathode gate of the first SCR is connected to the second power terminal. The ESD circuit further comprises a PMOS transistor having drain, source, gate, and bulk terminals. The PMOS transistor's gate, source and bulk terminals are connected to the first power terminal, the PMOS transistor drain terminal is connected to the cathode gate of the first SCR. The cathode and cathode gate of the second SCR are connected to the second power terminals. The anode of the second SCR is connected to its associated I/O buffering pads. The anode gate of the second SCR is connected to the first power terminal. The ESD circuit also comprises an NMOS transistor having drain, source, gate, and bulk terminals. The NMOS transistor's gate, source and bulk terminals are connected to the second power terminals. The NMOS transistor's drain terminal is connected to the anode gate of the second SCR.
摘要:
A digital converter including a first adjustment unit and a first transient detection unit. The first adjustment unit adjusts amplitude of an electrostatic discharge (ESD) pulse to generate a first adjustment signal when an ESD event occurs in a first power line and a second power line is at a complementary level. The first transient detection unit generates a first digital code according to the first adjustment signal.
摘要:
An ESD protection circuit including a discharge device, a first detection circuit, and a second detection circuit. The discharge device provides a discharge path between a first power rail and a second power rail when the discharge device is activated. The discharge device stops providing the discharge path when the discharge device is de-activated. The first detection circuit is coupled between the first and the second power rails. The first detection circuit activates the discharge device when an ESD event occurs in the first power rail. The second detection circuit de-activates the discharge device when the ESD event does not occur in the first power rail.
摘要:
An ESD protection circuit design incorporating a single, or a plurality of, parallel inductor and capacitor, also known as LC tank(s), to avoid power loss by parasitic capacitance in ESD circuits. The first design described incorporates a LC tank structure. The second includes two LC tank structures. These structures can be expanded to form ESD protection circuit structures stacked with n-stages LC tanks. The last design described is ESD protection circuits formed by stacking the first design. These designs can avoid power gain loss from parasitic capacitance of ESD, because the parameters of LC tank can be designed to resonant at a desired operating frequency. Each of these designs can be altered slightly to create variant designs with equal identical ESD protection capabilities.
摘要:
The present invention discloses a semiconductor-based planar micro-tube discharger structure and a method for fabricating the same. The method comprises steps: forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap; forming an insulating layer over the patterned electrodes and the separating block and filling the insulating layer into the gap. Thereby are formed at least two discharge paths. The method can fabricate a plurality discharge paths in a semiconductor structure. Therefore, the structure of the present invention has very high reliability and reusability.