Abstract:
The present invention relates to an electron gun cathode mount adapted at one end to secure a thermionic cathode and at the other end to be connected to an attachment member, wherein the electron gun cathode mount is structured so as to be capable of, when in use, reducing heat transfer from the thermionic cathode to the attachment member, and the material forming the electron gun cathode mount has a thermal conductivity of less than 10 Wm−1K−1 at the operating temperature of the thermionic cathode in a direction from the thermionic cathode to the attachment member. The present invention also relates to an electron gun assembly having the electron gun cathode mount installed therein.
Abstract:
There is proposed a column supporting structure that includes a viscoelastic sheet, a supporting plate which holds the viscoelastic sheet, and a fixation portion which connects the supporting plate to each lens barrel. The viscoelastic sheet is disposed to extend in a plane perpendicular to one lens barrel or the other lens barrel.
Abstract:
A cathode for an X-ray tube, an X-ray tube, a system for X-ray imaging, and a method for an assembly of a cathode for an X-ray tube include a filament, a support structure, a body structure, and a filament frame structure. The filament is provided to emit electrons towards an anode in an electron emitting direction, and the filament at least partially includes a helical structure. Further, the filament is held by the support structure which is fixedly connected to the body structure. The filament frame structure is provided for electron-optical focusing of the emitted electrons, and the filament frame structure is provided adjacent to the outer boundaries of the filament. The filament frame structure includes frame surface portions arranged transverse to the emitting direction, and the filament frame structure is held by the support structure.
Abstract:
According to one embodiment, an X-ray tube includes an anode target, a cathode including a filament and a convergence electrode which includes a groove portion, and an envelope. The groove portion includes a pair of first bottom surfaces which are located in the same plane as the filament and between which the filament is interposed in a width direction of the groove portion, and a pair of second bottom surfaces between which the filament and the pair of first bottom surfaces are interposed in a length direction of the groove portion and which are located closer to an opening of the groove portion than the pair of first bottom surfaces.
Abstract:
There is provided an emitter structure, a gas ion source including the emitter structure, and a focused ion beam system including the gas ion source. The emitter structure includes a pair of conductive pins which are fixed to a base member, a filament which is connected between the pair of conductive pins, and an emitter which is connected to the filament and has a sharp tip. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
Abstract:
The present invention discloses a semiconductor-based planar micro-tube discharger structure and a method for fabricating the same. The method comprises steps: forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap; forming an insulating layer over the patterned electrodes and the separating block and filling the insulating layer into the gap. Thereby are formed at least two discharge paths. The method can fabricate a plurality discharge paths in a semiconductor structure. Therefore, the structure of the present invention has very high reliability and reusability.
Abstract:
A system comprises a light source and an electrode device (20, 30, 60). The light source comprises a base (40) with a base surface (42) on which at least two contact elements are provided. The electrode device has at least two electrodes (23, 24, 34, 35), preferably of ferromagnetic or electromagnetic material and having a different polarity during operation. Adjacent electrodes are arranged at a predetermined electrode distance. Both electrodes are provided in one layer and are arranged in an interdigitated configuration. The light source has at least two, but preferably four contact elements (43, 53, 63) arranged at a mutual spacing which is essentially compatible with said electrode distance.
Abstract:
In an electron tube including vibration absorbers for linear members such as filaments, a vibration absorbing means that is made of a vibration absorber with a large vibration absorption effect, has a simple configuration, and is attachable easily to filaments is provided. The vibration absorbing means is formed of a holder 231, a vibration absorber 241, and a getter shielding member 251. These three members are attached to a shielding electrode S overlying the front substrate 111 to dispose the vibration absorber 241 between the holder 231 and getter shielding member 251. The vibration absorber 241 is mounted to slide or rotate between the holder 231 and the getter shielding member 251. The vibration absorber 241 has an aperture 2413 in which the filament is engaged. The bottom (apex) of the aperture 2413 is formed eccentrically. The vibration absorber 241 is in line contact with the shielding electrode S, as shown in FIG. 3(c).
Abstract:
A fluorescent luminous device capable of permitting vibration of a filamentary cathode due to any external vibration or shock transmitted thereto to be readily attenuated, to thereby substantially prevent flickering of a display due to a variation in luminance of the luminous section, resulting in improving quality of the display. A part of a vibration adsorbing element provided at the end of a filamentary cathode is separatably contacted with the fixed portion of an envelope in which the element and cathode are arranged.
Abstract:
This cathode has a body made of a material that does not emit electrons, having a substantially smooth non-emissive face and elements made of an emissive material each having an emissive face, spaced out from one another and fixed to the body, for example in hollows with their emissive surface in relief by a determined value with respect to said non-emissive face, so that a protection electrode can be placed between the projecting parts of these elements.