Abstract:
The present invention relates to a field emission light source device, which includes: a base substrate; at least one cathode strip, disposed over the base substrate; at least one emissive protrusion, disposed over the cathode strip and electrically connected to the cathode strip; an insulating layer, disposed over the cathode strip and having at least one opening to allow the emissive protrusion to protrude out of the opening; at least one anode strip, disposed over the insulating layer, where the cathode strip and the anode strip are arranged into an m×n matrix and the at least one anode strip individually has an impacted surface corresponding to the emissive protrude; and a phosphor layer disposed over the impacted surface. Accordingly, the present invention can enhance light utilization efficiency of a field emission light source device.
Abstract:
The present invention relates to a field emission display, which includes: a base substrate; a plurality of cathode strips, disposed over the base substrate; an insulating layer, disposed over the cathode strips and having a plurality of openings, therewith the openings corresponding to the cathode strips; a plurality of anode strips, disposed over the insulating layer, where the cathode strips and the anode strips are arranged into a matrix and the anode strips individually have at least one impacted surface; and a plurality of subpixel units, individually including: an emissive region having a phosphor layer disposed over the impacted surface; and at least one emissive protrusion, corresponding to the emissive region and disposed in the openings to electrically connect to the cathode strips and protrude out of the openings. Accordingly, the present invention can enhance light utilization efficiency of a field emission display.
Abstract:
A substrate 200 is provided with conductive cathode tracks and a field electron emission material on the tracks. Septa 201 and pillars 202 are provided as raised elements over the emission material. An electrically insulating layer is formed over the emission material and raised elements 201, 202, such that boundary walls are formed in the insulating layer where it contacts the raised elements. The raised elements 201, 202 are then removed, to leave emitter cells and voids for other components, defined by the boundary walls with the insulating layer. A gate electrode is provided over the insulating layer.
Abstract:
A field emission cathode plate is disclosed, which includes: a substrate; a cathode layer, disposed on the substrate; a conductive layer with an arc surface or a resistor layer with an opening and resistivity larger than that of the cathode layer, disposed on the cathode layer; and a cambered field emission layer, having an arc surface and disposed on the conductive layer or on the cathode layer in the opening of the resistor layer and covering the resistor layer around the opening. The present invention also provides a method for fabricating the above-mentioned field emission cathode plate. The method can provide field emission cathode plate achieving uniform field emission and does not involve high resolution and cost.
Abstract:
The present invention relates to a field emission device and an electrode structure thereof, comprising a starting base and a curved extending part formed on a surface of various shaped or dimensional structure. Therefore, the applied device and range is increased. The curved extending part is also for reducing the number of the contact point, as to simplify the procedure to design the peripheral circuit. Besides, a resisting section can be formed on the starting base. The resisting value of the resisting section is designed to provide various lighting effects.
Abstract:
A field emission display device (FED) is disclosed. The FED disclosed herein includes: a upper substrate, an anode layer, a phosphor layer, a lower substrate, at least one cathode, at least one electron emitter, and an partition plate set located between the upper substrate and the lower substrate. The partition plate set includes at least one nonmetal dielectric plate having plural holes, at least one insulation layer, and at least one gate. The FED of the present invention can simplify the process and reduce the damage caused by the manufacturing process, effectively increase the number of the electrons bombarding the phosphor layer, and increase the brightness and contrast ratio of the pixels.
Abstract:
A field emission lamp, capable of increasing the number of electron emitting points thereof, and of increasing the uniformity and the intensity of the light output therefrom by installing a mesh cathode is disclosed. The field emission lamp comprises: an outer shell having an inner surface, a mesh cathode unit surrounded by the outer shell, an anode unit formed on a portion of the inner surface of the outer shell, and a phosphor layer formed on a portion of the anode unit. Wherein, the light generated by the phosphor layer, due to the bombardment of the electrons, can output from the field emission lamp of the present invention, through the outer shell where none of the anode unit is formed thereon.
Abstract:
The present invention relates to a field emission light source device, which includes: a base substrate; at least one cathode strip, disposed over the base substrate; at least one emissive protrusion, disposed over the cathode strip and electrically connected to the cathode strip; an insulating layer, disposed over the cathode strip and having at least one opening to allow the emissive protrusion to protrude out of the opening; at least one anode strip, disposed over the insulating layer, where the cathode strip and the anode strip are arranged into an m×n matrix and the at least one anode strip individually has an impacted surface corresponding to the emissive protrude; and a phosphor layer disposed over the impacted surface. Accordingly, the present invention can enhance light utilization efficiency of a field emission light source device.
Abstract:
A field emission lamp, capable of preventing the degradation and the non-uniformly distribution of the light intensity of the emitted light, even after long-term usage of the field emission lamp, is disclosed. The anode of the disclosed field emission lamp is not required to be transparent. The disclosed field emission lamp comprises: a transparent shell; an anode unit set inside the transparent shell; a cathode unit set between the anode unit and the transparent shell; and a phosphor layer set above the anode unit. The cathode unit is apart from the phosphor layer with a certain distance. The phosphor layer and the anode unit are both surrounded by the cathode unit.
Abstract:
A field emission lamp and method of fabricating the same are disclosed, the field emission lamp of the present invention comprising a lamp tube, an anode, at least one auxiliary electrode, a cathode, and an emitter layer. The anode comprises a transparent conductive layer and a phosphor layer, and the transparent conductive layer is made of ITO, IZO, AZO, GZO, zinc oxide, or the combination thereof. The auxiliary electrode of the field emission lamp of the present invention can shorten the electron transportation path length, increase the electron transportation efficiency, reduce the phenomenon of micro-discharges caused by electron charging, reduce the voltage loss, reduce the temperature increase of the phosphor layer and elongate the lifetime of the field emission lamp.