摘要:
In a field emission device, the fundamental cause of spherical aberration in an emitted electron beam trajectory is eliminated or mitigated. An aberration suppressor electrode 31 is provided at a lower vertical position than an extraction gate electrode 13 so its opening inner peripheral edge 31e faces a position near an emitter tip 11tp. The vertical position of the opening inner peripheral edge 31e of the aberration suppressor electrode 31 is made lower than the vertical position of the emitter tip 11tp. An aberration suppressing voltage Vsp is applied to the aberration suppressor electrode 31 that is a lower voltage than the potential of the emitter 11 and controls equipotential lines near the emitter tip 11tp to make them parallel.
摘要:
Provided is a method for manufacturing a field emission array with a carbon microstructure. The method includes: a photomask attachment step of attaching a photomask with a pattern groove to one surface of a transparent substrate; a photoresist attachment step of attaching a negative photoresist to one surface of the photomask; an exposure step of irradiating light toward the opposite surface of the transparent substrate from the photomask to cure a portion of the negative photoresist with the light irradiated on the negative photoresist through the pattern groove; a developing step of removing an uncured portion of the negative photoresist while leaving the cured portion of the negative photoresist as a microstructure; a pyrolysis step of heating and carbonizing the microstructure thus obtained; and a cathode attachment step of attaching a voltage-supplying cathode to the surface of the transparent substrate on which the microstructure is formed.
摘要:
Provided is a method for manufacturing a field emission array with a carbon microstructure. The method includes: a photomask attachment step of attaching a photomask with a pattern groove to one surface of a transparent substrate; a photoresist attachment step of attaching a negative photoresist to one surface of the photomask; an exposure step of irradiating light toward the opposite surface of the transparent substrate from the photomask to cure a portion of the negative photoresist with the light irradiated on the negative photoresist through the pattern groove; a developing step of removing an uncured portion of the negative photoresist while leaving the cured portion of the negative photoresist as a microstructure; a pyrolysis step of heating and carbonizing the microstructure thus obtained; and a cathode attachment step of attaching a voltage-supplying cathode to the surface of the transparent substrate on which the microstructure is formed.
摘要:
A substrate 200 is provided with conductive cathode tracks and a field electron emission material on the tracks. Septa 201 and pillars 202 are provided as raised elements over the emission material. An electrically insulating layer is formed over the emission material and raised elements 201, 202, such that boundary walls are formed in the insulating layer where it contacts the raised elements. The raised elements 201, 202 are then removed, to leave emitter cells and voids for other components, defined by the boundary walls with the insulating layer. A gate electrode is provided over the insulating layer.
摘要:
A method for fabricating microelectronic deices in which an interconnect layer is electrically isolated from large protuberances that project from a lower conductive layer to a desired endpoint of a chemical-mechanical planarization process. The lower conductive layer is covered with an insulating material to form an insulator layer that generally follows the contour of the lower conductive layer and any large protuberances. A highly conductive interconnect material is then deposited over the insulator layer to form an interconnect layer that generally follows the contour of the insulator layer. The interconnect layer may be deposited directly on the insulator layer, or it may be deposited on an intermediate layer between the interconnect layer and the insulator layer. After the upper conductive layer is deposited, the insulator layer and the upper conductive layer are planarized with a chemical-mechanical planarization process to a desired endpoint.
摘要:
In a field emission device, the fundamental cause of spherical aberration in an emitted electron beam trajectory is eliminated or mitigated. An aberration suppressor electrode 31 is provided at a lower vertical position than an extraction gate electrode 13 so its opening inner peripheral edge 31e faces a position near an emitter tip 11tp. The vertical position of the opening inner peripheral edge 31e of the aberration suppressor electrode 31 is made lower than the vertical position of the emitter tip 11tp. An aberration suppressing voltage Vsp is applied to the aberration suppressor electrode 31 that is a lower voltage than the potential of the emitter 11 and controls equipotential lines near the emitter tip 11tp to make them parallel.
摘要:
A substrate 200 is provided with conductive cathode tracks and a field electron emission material on the tracks. Septa 201 and pillars 202 are provided as raised elements over the emission material. An electrically insulating layer is formed over the emission material and raised elements 201, 202, such that boundary walls are formed in the insulating layer where it contacts the raised elements. The raised elements 201, 202 are then removed, to leave emitter cells and voids for other components, defined by the boundary walls with the insulating layer. A gate electrode is provided over the insulating layer.
摘要:
A field emission display device (FED) is disclosed. The FED disclosed herein includes: a upper substrate, an anode layer, a phosphor layer, a lower substrate, at least one cathode, at least one electron emitter, and an partition plate set located between the upper substrate and the lower substrate. The partition plate set includes at least one nonmetal dielectric plate having plural holes, at least one insulation layer, and at least one gate. The FED of the present invention can simplify the process and reduce the damage caused by the manufacturing process, effectively increase the number of the electrons bombarding the phosphor layer, and increase the brightness and contrast ratio of the pixels.