Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
The present disclosure provides an electron beam device (500) for inspecting a sample (10) with an electron beam, comprising an electron beam source comprising a cold field emitter (100) for emitting an electron beam, electron beam optics for directing and focusing the electron beam onto the sample (10), and a detector device (540) for detecting secondary charged particles generated by impingement of the electron beam on the sample (10). The cold field emitter (100) includes an emitter tip (110), a base arrangement (120) configured for supporting the emitter tip (110) and comprising a first base element (122) and a second base element (124), and a filament (130) having at least a first filament portion (132) and a second filament portion (134) attaching the emitter tip (110) to the base arrangement (120), wherein the first filament portion (132) extends between the emitter tip (110) and the first base element (122) and the second filament portion (134) extends between the emitter tip (110) and the second base element (124), wherein a length (L) of each of the first filament portion (132) and the second filament portion (134) is 4 mm or less, and wherein a diameter of a cross-section of each of the first filament portion (132) and the second filament portion (134) is 0.13 mm or less.
Abstract:
A field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a first dielectric layer, a cathode electrode, and an electron emission layer. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode electrode is located apart from the electron pulling electrode by the first dielectric layer. The cathode electrode has a surface oriented to the electron pulling electrode and defines a first opening as an electron output portion. The electron emission layer is located on the surface of the cathode electrode and oriented to the electron pulling electrode.
Abstract:
A system and method for addressing individual electron emitters in an emitter array is disclosed. The system includes an emitter array comprising a plurality of emitter elements arranged in a non-rectangular layout and configured to generate at least one electron beam and a plurality of extraction grids positioned adjacent to the emitter array, each extraction grid being associated with at least one emitter element to extract the at least one electron beam therefrom. The field emitter array system also includes a plurality of voltage control channels connected to the plurality of emitter elements and the plurality of extraction grids such that each of the emitter elements and each of the extraction grids is individually addressable. In the field emitter array system, the number of voltage control channels is equal to the sum of a pair of integers closest in value whose product equals the number of emitter elements.
Abstract:
An electron emission device includes a substrate, first electrodes formed on the substrate, electron emission regions electrically connected to the first electrodes, and second electrodes placed over the first electrodes such that the second electrodes are insulated from the first electrodes. The second electrodes have openings to expose the electron emission regions. A third electrode is placed over the second electrodes such that the third electrode is insulated from the second electrodes. The third electrode has openings communicating with the openings of the second electrodes. Each of the electron emission regions and the second electrodes simultaneously satisfy the following conditions: D2/D1≦0.579 (1), and D2≧1 μ (2) where D1 indicates the width of each of the openings of the second electrode, and D2 indicates the width of each of the electron emission regions.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
A field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a first dielectric layer, a cathode electrode, and an electron emission layer. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode electrode is located apart from the electron pulling electrode by the first dielectric layer. The cathode electrode has a surface oriented to the electron pulling electrode and defines a first opening as an electron output portion. The electron emission layer is located on the surface of the cathode electrode and oriented to the electron pulling electrode.
Abstract:
Provided is an electron-emitting device including an insulating member and a gate stacked on a substrate. A cathode is disposed on a side surface of the insulating member. The cathode has a plurality of protrusions provided along a corner of the insulating member. The gate has a plurality of protrusions extending toward the cathode.
Abstract:
A system and method for addressing individual electron emitters in an emitter array is disclosed. The system includes an emitter array comprising a plurality of emitter elements arranged in a non-rectangular layout and configured to generate at least one electron beam and a plurality of extraction grids positioned adjacent to the emitter array, each extraction grid being associated with at least one emitter element to extract the at least one electron beam therefrom. The field emitter array system also includes a plurality of voltage control channels connected to the plurality of emitter elements and the plurality of extraction grids such that each of the emitter elements and each of the extraction grids is individually addressable. In the field emitter array system, the number of voltage control channels is equal to the sum of a pair of integers closest in value whose product equals the number of emitter elements.
Abstract:
The present invention relates to a field emission device and an electrode structure thereof, comprising a starting base and a curved extending part formed on a surface of various shaped or dimensional structure. Therefore, the applied device and range is increased. The curved extending part is also for reducing the number of the contact point, as to simplify the procedure to design the peripheral circuit. Besides, a resisting section can be formed on the starting base. The resisting value of the resisting section is designed to provide various lighting effects.