Abstract:
A field emission device comprises one or more emitter elements, each having a high aspect ratio structure with a nanometer scaled cross section; and one or more segmented electrodes, each surrounding one of the one or more emitters. Each of the one or more segmented electrodes has multiple electrode plates. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
The present disclosure may provide a field emission device with an enhanced beam convergence. For this, the device may include a gate structure disposed between a cathode electrode and an anode electrode, wherein the gate structure includes a gate electrode and an atomic layer sheet disposed on the gate electrode, the gate electrode facing an emitter and having at least one aperture formed therein.
Abstract:
The present disclosure may provide a field emission device with an enhanced beam convergence. For this, the device may include a gate structure disposed between a cathode electrode and an anode electrode, wherein the gate structure includes a gate electrode and an atomic layer sheet disposed on the gate electrode, the gate electrode facing an emitter and having at least one aperture formed therein.
Abstract:
An electron emission device includes a cathode electrode; a mesh-shaped gate electrode spaced apart from the cathode electrode; a plurality of gate spacers between the cathode electrode and the gate electrode; and a plurality of electron emission sources between the cathode electrode and the gate electrode, and alternating with the plurality of gate spacers.
Abstract:
A field emission device comprises one or more emitter elements, each having a high aspect ratio structure with a nanometer scaled cross section; and one or more segmented electrodes, each surrounding one of the one or more emitters. Each of the one or more segmented electrodes has multiple electrode plates. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
An electron beam apparatus is provided having an electron emitting device which has a simple configuration, exhibits high electron emission efficiency, operates stably, and in which emitted electrons are effectively converged. The electron beam apparatus includes: an insulator having a notch on its surface; a gate positioned on the surface of the insulator; at least one cathode having a protruding portion protruding from an edge of the notch toward the gate, and positioned on the surface of the insulator so that the protruding portion is opposed to the gate; and an anode arranged to be opposed to the protruding portion via the gate, wherein the gate is formed on the surface of the insulator so that at least a part of a region opposed to the cathode is projected outward and recessed portions are provided in which ends of the gate are recessed and interpose the projected region.
Abstract:
An x-ray generator includes a housing, a cathode block that is arranged in the housing and emits electrons via a field emission scheme, an anode block that is arranged in the housing and generates x-rays in response to the electrons emitted from the cathode block and collide with the anode block, and a heat sink block that contacts the cathode block and dissipates heat generated therein to an outside of the housing.
Abstract:
An electron emission device includes a cathode electrode; a mesh-shaped gate electrode spaced apart from the cathode electrode; a plurality of gate spacers between the cathode electrode and the gate electrode; and a plurality of electron emission sources between the cathode electrode and the gate electrode, and alternating with the plurality of gate spacers.
Abstract:
An electron beam apparatus is provided having an electron emitting device which has a simple configuration, exhibits high electron emission efficiency, operates stably, and in which emitted electrons are effectively converged. The electron beam apparatus includes: an insulator having a notch on its surface; a gate positioned on the surface of the insulator; at least one cathode having a protruding portion protruding from an edge of the notch toward the gate, and positioned on the surface of the insulator so that the protruding portion is opposed to the gate; and an anode arranged to be opposed to the protruding portion via the gate, wherein the gate is formed on the surface of the insulator so that at least a part of a region opposed to the cathode is projected outward and recessed portions are provided in which ends of the gate are recessed and interpose the projected region.