Abstract:
A microfluidic device for use with a microfluidic delivery system, such as an organic vapor jet printing device, includes a glass layer that is directly bonded to a microfabricated die and a metal plate via a double anodic bond. The double anodic bond is formed by forming a first anodic bond at an interface of the microfabricated die and the glass layer, and forming a second anodic bond at an interface of the metal plate and the glass layer, where the second anodic bond is formed using a voltage that is lower than the voltage used to form the first anodic bond. The second anodic bond is formed with the polarity of the voltage reversed with respect to the glass layer and the formation of the first anodic bond. The metal plate includes attachment features that allow removal of the microfluidic device from a fixture.
Abstract:
Methods of fabricating a device having laterally patterned first and second sub-devices, such as subpixels of an OLED, are provided. Exemplary methods may include depositing via organic vapor jet printing (OVJP) a first organic layer of the first sub-device and a first organic layer of the second sub-device. The first organic layer of the first sub-device and the first organic layer of the second sub-device are both the same type of layer, but have different thicknesses. The type of layer is selected from an ETL, an HTL, an HIL, a spacer and a capping layer.
Abstract:
Thin film permeation barrier systems and techniques of fabricating the same are provided. The barrier system includes a hybrid layer, such as a layer containing SiOxCyHz, and an inorganic layer.
Abstract translation:提供薄膜渗透屏障系统及其制造技术。 阻挡系统包括混合层,例如含有SiO x C H z的层和无机层。
Abstract:
Sources, devices, and techniques for deposition of organic layers, such as for use in an OLED, are provided. A vaporizer may vaporize a material between cooled side walls and toward a mask having an adjustable mask opening. The mask opening may be adjusted to control the pattern of deposition of the material on a substrate, such as to correct for material buildup that occurs during deposition. Material may be collected from the cooled side walls for reuse.
Abstract:
Methods of modulating flow during vapor jet deposition of organic materials are provided. A method may include ejecting a vapor entrained in a delivery gas from a nozzle onto a substrate upon which the vapor condenses. A confinement gas may be provided that has a flow direction opposing a flow direction of the delivery gas ejected from the nozzle. A vacuum source may be provided that is adjacent to a delivery gas aperture of the nozzle. The method may include adjusting, by an actuator, a fly height separation between a deposition nozzle aperture of the nozzle and a deposition target.
Abstract:
A microfluidic device for use with a microfluidic delivery system, such as an organic vapor jet printing device, includes a glass layer that is directly bonded to a microfabricated die and a metal plate via a double anodic bond. The double anodic bond is formed by forming a first anodic bond at an interface of the microfabricated die and the glass layer, and forming a second anodic bond at an interface of the metal plate and the glass layer, where the second anodic bond is formed using a voltage that is lower than the voltage used to form the first anodic bond. The second anodic bond is formed with the polarity of the voltage reversed with respect to the glass layer and the formation of the first anodic bond. The metal plate includes attachment features that allow removal of the microfluidic device from a fixture.
Abstract:
A microfluidic device for use with a microfluidic delivery system, such as an organic vapor jet printing device, includes a glass layer that is directly bonded to a microfabricated die and a metal plate via a double anodic bond. The double anodic bond is formed by forming a first anodic bond at an interface of the microfabricated die and the glass layer, and forming a second anodic bond at an interface of the metal plate and the glass layer, where the second anodic bond is formed using a voltage that is lower than the voltage used to form the first anodic bond. The second anodic bond is formed with the polarity of the voltage reversed with respect to the glass layer and the formation of the first anodic bond. The metal plate includes attachment features that allow removal of the microfluidic device from a fixture.
Abstract:
Systems and techniques for depositing organic material on a substrate are provided, in which one or more shield gas flows prevents contamination of the substrate by the chamber ambient. Thus, multiple layers of the same or different materials may be deposited in a single deposition chamber, without the need for movement between different deposition chambers, and with reduced chance of cross-contamination between layers.
Abstract:
Methods and devices for controlling pressures in microenvironments between a deposition apparatus and a substrate are provided. Each microenvironment is associated with an aperture of the deposition apparatus which can allow for control of the microenvironment.
Abstract:
Embodiments of the disclosed subject matter provide a nozzle assembly and method of making the same, the nozzle assembly including a first aperture formed on a first aperture plate to eject a carrier gas flow having organic vapor onto a substrate in a deposition chamber, second apertures formed on a second aperture plate disposed adjacent to the first aperture to form a vacuum aperture, where the first aperture plate and the second aperture plate are separated by a first separator plate, third apertures formed on a third aperture plate to eject purge gas that are disposed adjacent to the second aperture plate, where the second aperture plate and the third aperture plate are separated by second separator plate, and a third separator plate is disposed adjacent to the one or more third aperture plates to form a gas channel in the one or more third aperture plates.